1887

Abstract

Summary: Downstream from the surfactin synthetase operon in a new operon-type structure has been localized which, on the basis of sequence determination, potentially encodes an ABC-type transport system. The 268 amino acid protein, the product of , represents the solute-binding component of the system whereas the product a 234 amino acid protein, is the transmembrane component. Finally potentially encodes a typical 241 amino acid ATP-binding protein involved in energy supply. Comparison of the three proteins with the subunits of other ABC-type systems suggests that this new system is involved in amino acid transport.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-7-1781
1995-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/7/mic-141-7-1781.html?itemId=/content/journal/micro/10.1099/13500872-141-7-1781&mimeType=html&fmt=ahah

References

  1. Alloing G., Trombe M.-C., Claverys J.-P. 1990; The ami locus of the Gram-positive bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport operons of Gram-negative bacteria.. Mol Microbiol 4:633–644
    [Google Scholar]
  2. Cosmina P., Rodriguez F., de Ferra F., Grandi G., Perego M., Venema G., van Sinderen D. 1993; Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. . Mol Microbiol 8:821–831
    [Google Scholar]
  3. Grossman T.H., Tuckman M., Ellestad S., Osburne M.S. 1993; Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B.subtilis sfp 0 and Escherichia coli entD genes.. J Bacterial 175:6203–6211
    [Google Scholar]
  4. von Heijne G. 1989; The structure of signal peptides from bacterial lipoproteins.. Protein Eng 2:531–534
    [Google Scholar]
  5. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing.. Gene 28:351–359
    [Google Scholar]
  6. Higgins C.F. 1992; ABC transporters: from microorganisms to man.. Annu Rev Cell Biol 8:67–113
    [Google Scholar]
  7. Higgins C.F., Haag P.D., Nikaido K., Ardeshir F., Garcia G., Ferro-Luzzi Ames G. 1982; Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium. . Nature 298:723–727
    [Google Scholar]
  8. Koide A., Hoch J.A. 1994; Identification of a second oligopeptide transport system in Bacillus subtilis and determination of its role in sporulation.. Mol Microbiol 13:417–426
    [Google Scholar]
  9. Mathiopoulos C., Mueller J.P., Slack F.J., Murphy C.G., Patankar S., Bukusoglu G., Sonenshein A.L. 1991; A Bacillus subtilis dipeptide transport system expressed early during sporulation.. Mol Microbiol 5:1903–1913
    [Google Scholar]
  10. Nohno T., Saito T., Hong J.-S. 1986; Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ). . Mol & Gen Genet 205:260–269
    [Google Scholar]
  11. Perego M., Higgins C. F., Pearce S.R., Gallagher M.P., Hoch J.A. 1991; The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation.. Mol Microbiol 5:173–185
    [Google Scholar]
  12. Rudner D.Z., LeDeaux J.R., Ireton K., Grossman A.D. 1991; The spoOK locus of bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence.. J Bacteriol 173:1388–1398
    [Google Scholar]
  13. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  14. van Sinderen D., Galli G., Cosmina P., de Ferra F., Withoff S., Venema G., Grandi G. 1993; Characterization of the sr/A locus of Bacillus subtilis-. only the valine-activating domain of srfA is involved in the establishment of genetic competence.. Mol Microbiol 8:833–841
    [Google Scholar]
  15. Tam R., Saier M.H. Jr 1993; Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria.. Microbiol Rev 57:320–346
    [Google Scholar]
  16. Townsend D.E., Wilkinson B.J. 1992; Proline transport in Staphylococcus aureus-, a high-affinity system and a low-affinity system involved in osmoregulation.. J Bacteriol 174:2702–2710
    [Google Scholar]
  17. Valdivia R.H., Wang L., Winans S.C. 1991; Characterization of a putative periplasmic transport system for octopine accumulation encoded by Agrobacterium tumefaciens Ti plasmid pTiA6.. J Bacteriol 173:6398–6405
    [Google Scholar]
  18. Wissenbach U., Keck B., Unden G. 1993; Physical map location of the new artPIQMJ genes of Escherichia coli, encoding a periplasmic arginine transport system.. J Bacteriol 175:3687–3688
    [Google Scholar]
  19. Woodson K., Devine K.M. 1994; Analysis of a ribose transport operon from Bacillus subtilis. . Microbiology 140:1829–1838
    [Google Scholar]
  20. Wu L., Welker N.E. 1991; Cloning and characterization of a glutamine transport operon of Bacillus stearothermophilus NUB36: effect of temperature on regulation of transcription.. J Bacteriol 173:4877–4888
    [Google Scholar]
  21. Zanker H., von Lintig J., Schröder J. 1992; Opine transport genes in the octopine (occ) and nopaline (noc) catabolic regions in Ti plasmids of Agrobacterium tumefaciens. . J Bacteriol 174:841–849
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-7-1781
Loading
/content/journal/micro/10.1099/13500872-141-7-1781
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error