1887

Abstract

Summary: The genes of and encode the filament-cap protein of the flagellar apparatus, which facilitates the polymerization of endogenous flagellin at the tips of the growing filaments. Previous sequence analysis of this operon in both organisms has revealed that the gene constitutes an operon together with two additional genes, and . Based on the gene-disruption experiment in , both the and genes have been postulated to be necessary for flagellation. In the present study, we constructed mutants in which either or on the chromosome was specifically disrupted. Both mutants were found to produce functional flagella, indicating that these genes are dispensable for motility development in . However, flagellar filaments produced by the mutant were much shorter than those produced by the wild-type strain. This indicates that the mutation affects the elongation step of filament assembly. The excretion efficiency of flagellin was examined in the -mutant background, where the exported flagellin molecules cannot assemble onto the hooks, resulting in their excretion into the culture media. We found that the amount of flagellin excreted was much reduced by the mutation. Based on these results, we conclude that FliS facilitates the export of flagellin through the flagellum-specific export pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-7-1715
1995-07-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/7/mic-141-7-1715.html?itemId=/content/journal/micro/10.1099/13500872-141-7-1715&mimeType=html&fmt=ahah

References

  1. Asakura S., Eguchi G., lino T. 1964; Reconstitution of bacteria flagella in vitro. . J Mol Biol 10:42–56
    [Google Scholar]
  2. Chen L., Helmann J.D. 1994; The Bacillus subtilis sigmaD- dependent operon encoding the flagellar proteins FliD, FliS, and FliT.. J Bacteriol 176:3093–3101
    [Google Scholar]
  3. Hartl F.-U., Lecker S., Schiebel E., Hendrick J.P., Wickner W. 1990; The binding cascade of SecB to Sec A to SecY /E mediates preprotein targeting to the E. coli plasma membrane. . Cell 63:269–279
    [Google Scholar]
  4. Homma M., lino T. 1985; Locations of hook-associated proteins in flagellar structures ofSalmonella typhimurium. . J Bacteriol 162:183–189
    [Google Scholar]
  5. Homma M., Fujita H., Yamaguchi S., lino T. 1984a; Excretion of unassembled flagellin bySalmonella typhimurium mutants deficient in hook-associated proteins.. J Bacteriol 159:1056–1059
    [Google Scholar]
  6. Homma M., Kutsukake K., lino T., Yamaguchi S. 1984b; Hook-associated proteins essential for flagellar filament formation inSalmonella typhimurium. . J Bacteriol 157:100–108
    [Google Scholar]
  7. Homma M., lino T., Kutsukake K., Yamaguchi S. 1986; In vitro reconstitution of flagellar filaments onto hooks of filamentless mutants ofSalmonella typhimurium by addition of hook-associated proteins.. Proc Natl Acad Sci USA 836169–6173
    [Google Scholar]
  8. Hughes K.T., Gillen K.L., Semon M.J., Karlinsey J.E. 1993; Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator.. Science 262:1277–1280
    [Google Scholar]
  9. Ikeda T., Asakura S., Kamiya R. 1985; ̒Cap̓ on the tip of Salmonella flagella.. J Mol Biol 184:735–737
    [Google Scholar]
  10. Ikeda T., Homma M., lino T., Asakura S., Kamiya R. 1987; Localization and stoichiometry of hook-associated proteins withinSalmonella typhimuriumflagella.. J Bacteriol 169:1168–1173
    [Google Scholar]
  11. Ikeda T., Asakura S., Kamiya R. 1989; Total reconstruction ofSalmonella flagellar filaments from hook and purified flagellin and hook-associated proteins.. J Mol Biol 209:109–114
    [Google Scholar]
  12. Ikeda T., Yamaguchi S., Hotani H. 1993; Flagellar growth in a filament-lessSalmonella fliD mutant supplemented with purified hook-associated protein 2.. J Biochem 114:39–44
    [Google Scholar]
  13. Kagawa H., Morishita H., Enomoto M. 1981; Reconstructionin vitro of flagellar filaments onto hook structures attached to bacterial cells.. J Mol Biol 153:465–470
    [Google Scholar]
  14. Kagawa H., Nishiyama T., Yamaguchi S. 1983; Motility development ofSalmonella typhimurium cells with flaV mutations after addition of exogenous flagellin.. J Bacteriol 155:435–437
    [Google Scholar]
  15. Kawagishi I., Muller V., Williams A.W., Irikura V.M., Macnab R.M. 1992; Subdivision of flagellar region III of theEscherichia coli andSalmonella typhimurium chromosomes and identification of two additional flagellar genes.. J Gen Microbiol 138:1051–1065
    [Google Scholar]
  16. Kumamoto C.A. 1989; Escherichia coli SecB associates with exported protein precursorsin vitro. . Proc Natl Acad Sci USA 865320–5324
    [Google Scholar]
  17. Kutsukake K. 1994; Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly inSalmonella typhimurium. . Mol & Gen Genet 243:605–612
    [Google Scholar]
  18. Kutsukake K., lino T., Komeda Y., Yamaguchi S. 1980; Functional homology offla genes betweenSalmonella typhimurium andEscherichia coli. . Mol & Gen Genet 178:59–67
    [Google Scholar]
  19. Kutsukake K., Nakao T., lino T. 1985; A gene for DNA invertase and an invertible DNA inEscherichia coli K-12.. Gene 34:343–350
    [Google Scholar]
  20. Kutsukake K., Ohya Y., Yamaguchi S., lino T. 1988; Operon structure of flagellar genes inSalmonella typhimurium.. Mol & Gen Genet 214:11–15
    [Google Scholar]
  21. Kutsukake K., Ohya Y., lino T. 1990; Transcriptional analysis of the flagellar regulon ofSalmonella typhimurium. . J Bacteriol 172:741–747
    [Google Scholar]
  22. Kutsukake K., Okada T., Yokoseki T., lino T. 1994; Sequence analysis of theflgA gene and its adjacent region inSalmonella typhimurium, and identification of another flagellar gene,flgN.. Gene 143:49–54
    [Google Scholar]
  23. Kuwajima G., Kawagishi I., Homma M., Asaka J.-l., Kondo E., Macnab R.M. 1989; Export of the N-terminal fragment ofEscherichia coli flagellin by a flagellum-specific pathway.. Proc Natl Acad Sci USA 864953–4957
    [Google Scholar]
  24. Macnab R.M. 1992; Genetics and biogenesis of bacterial flagella.. Annu Rev Genet 26:131–158
    [Google Scholar]
  25. Minamino T., lino T., Kutsukake K. 1994; Molecular characterization of the Salmonella typhimuriumflhB operon and its protein products.. J Bacteriol 176:7630–7637
    [Google Scholar]
  26. Namba K., Yamashita I., Vonderviszt F. 1989; Structure of the core and central channel of bacterial flagella.. Nature 342:648–654
    [Google Scholar]
  27. Ohnishi K., Kutsukake K., Suzuki H., lino T. 1992; A novel transcriptional regulation mechanism in the flagellar regulon ofSalmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor, σF.. Mol Microbiol 6:3149–3157
    [Google Scholar]
  28. Phillips G.J., Silhavy T.J. 1990; Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins inE. coli. . Nature 344:882–884
    [Google Scholar]
  29. Raha M., Sockett H., Macnab R.M. 1994; Characterization of thefliE gene in the flagellar regulon ofEscherichia coli andSalmonella typhimurium. . J Bacteriol 176:2308–2311
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  31. Suzuki T., lino T., Horiguchi T., Yamaguchi S. 1978; Incomplete flagellar structures in nonflagellate mutants of Salmonella typhimurium. . J Bacteriol 133:904–915
    [Google Scholar]
  32. Takeshita S., Sato M., Toda M., Masahashi W., Hashimoto-Gotoh T. 1987; High-copy-number and low-copy-number plasmid vectors forlacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection.. Gene 61:63–74
    [Google Scholar]
  33. Vogler A.P., Homma M., Irikura V.M., Macnab R.M. 1991; Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of Flil to F0F1, vacuolar, and archaebacterial ATPase subunits.. J Bacteriol 173:3564–3572
    [Google Scholar]
  34. Yamada M., Hakura A., Sofuni T., Nohmi T. 1993; New method for gene disruption inSalmonella typhimurium: construction and characterization of anada-deledon derivative ofSalmonella typhimurium TA1535.. J Bacteriol 175:5539–5547
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-7-1715
Loading
/content/journal/micro/10.1099/13500872-141-7-1715
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error