-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria Free

Abstract

Summary: A series of transposons are described which contain the gene, encoding -glucuronidase (GUS), expressed from a variety of promoters, both regulated and constitutive. The regulated promoters include the promoter which can be induced by IPTG, and promoters which are symbiotically activated in legume nodules. One transposon contains with a strong Shine-Dalgarno translation initiation context, but no promoter, and thus acts as a promoter-probe transposon. In addition, a operon deletion strain of , and a transposon designed for use in chromosomal mapping using PFGE, are described. The GUS transposons are constructed in a mini-Tn5 system which can be transferred to Gram-negative bacteria by conjugation, and will form stable genomic insertions. Due to the absence of GUS activity in plants and many bacteria of economic importance, these transposons constitute powerful new tools for studying the ecology and population biology of bacteria in the environment and in association with plants, as well as for studies of the fundamental molecular basis of such interactions. The variety of assays available for GUS enable both quantitative assays and spatial localization of marked bacteria to be carried out.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-7-1691
1995-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/7/mic-141-7-1691.html?itemId=/content/journal/micro/10.1099/13500872-141-7-1691&mimeType=html&fmt=ahah

References

  1. Alvarez-Morales A., Betancourt-Alvarez M., Kaluza K., Hennecke H. 1986; Activation of the Bradyrhizobium japonicum nifH and nifDK operons is dependent on promoter-upstream DNA sequences.. Nucleic Acids Res 14:4207–4227
    [Google Scholar]
  2. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. 1994 Current Protocols in Molecular Biology. New York:: Greene Publishing & Wiley Interscience.;
    [Google Scholar]
  3. Bardonnet N., Blanco C. 1992; uidA-antibiotic resistance cassettes for insertion mutagenesis, gene fusions and genetic constructions.. FEMS Microbiol Lett 93:243–248
    [Google Scholar]
  4. Bevege D.I. 1968; A rapid technique for clearing tannins and staining intact roots for detection of mycorrhizas caused by Endogone spp., and some records of infection in Australasian plants.. Trans Br Mycol Soc 51:808–810
    [Google Scholar]
  5. De Boer M.H., Djordjevic M.A. 1995; The inhibition of infection thread development in the cultivar-specific interaction of Rhizobium and subterranean clover is not caused by a hypersensitive response.. Protoplasma 185:58–71
    [Google Scholar]
  6. Brown C.M., Dilworth M.J. 1975; Ammonia assimilation by Rhizobium cultures and bacteroids.. J Gen Microbiol 122:61–67
    [Google Scholar]
  7. de Bruijn F.J., Lupski J.R. 1984; The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids - a review.. Gene 27:131–149
    [Google Scholar]
  8. Bryan L.E. 1982 Bacterial Resistance and Susceptibility to Chemotherapeutic Agents. Cambridge:: Cambridge University Press.;
    [Google Scholar]
  9. Christiansen-Weniger C., Vanderleyden J. 1993; Ammonium- excreting Azospirillum sp. become intracellularly established in maize (Zea mays) para-nodules.. Biol Fertil Soils 17:1–8
    [Google Scholar]
  10. Collins C.H., Lyne P.M. 1985 Microbiological Methods, 5th. London:: Butterworths.;
    [Google Scholar]
  11. De Block M., Debrouwer D. 1992; In-situ enzyme histochemistry on plastic-embedded plant material. The development of an artefact-free β-glucuronidase assay.. Plant J 2:261–266
    [Google Scholar]
  12. Drahos D.J. 1991; Current practices for monitoring genetically engineered microbes in the environment.. Agric Biotechnol News 3:39–48
    [Google Scholar]
  13. Feldhaus M.J., Hwa V., Cheng Q., Salyers A.A. 1991; Use of an Escherichia coli β-glucuronidase gene as a reporter gene for investigation of Bacteroides promoters.. J Bacteriol 173:4540–4543
    [Google Scholar]
  14. Fischer H.-M. 1994; Genetic regulation of nitrogen fixation in rhizobia.. Microbiol Rev 58:352–396
    [Google Scholar]
  15. Fürste J.P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. 1986; Molecular cloning of the plasmid RP4 primase region in a multi host-range tacP expression vector.. Gene 48:119–131
    [Google Scholar]
  16. Heitzer A., Webb O.F., Thonnard J.E., Sayler G.S. 1992; Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium.. Appl Environ Microbiol 58:1839–1846
    [Google Scholar]
  17. Herrero M., de Lorenzo V., Timmis K.T. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosome insertion of foreign genes in gramnegative bacteria.. J Bacteriol 172:6557–6567
    [Google Scholar]
  18. Hurek T., Reinhold-Hurek B., van Montagu M., Kellenberger E. 1994; Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses.. J Bacteriol 176:1913–1923
    [Google Scholar]
  19. Jefferson R.A. 1987; Assaying chimeric genes in plants, the GUS gene fusion system.. Plant Mol Biol Report 5:387–405
    [Google Scholar]
  20. Jefferson R.A., Burgess S.M., Hirsh D. 1986; β Glucuronidase from Escherichia coli as a gene-fusion marker.. Proc Natl Acad Sci USA 838447–8451
    [Google Scholar]
  21. Jefferson R.A., Kavanagh T.A. 1987; GUS fusions, β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.. EMBO J 6:3901–3907
    [Google Scholar]
  22. Jochimsen B., Nygaard P., Vestergaard T. 1975; Location on the chromosome of Escherichia coli of genes governing purine metabolism.. Mol & Gen Genet 143:85–91
    [Google Scholar]
  23. Liang W.-J. 1992 The glucuronide transport system of Escherichia coli. PhD thesis.; Cambridge University.:
    [Google Scholar]
  24. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. T. 1990; Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative Eubacteria.. J Bacteriol 172:6568–6572
    [Google Scholar]
  25. de Maagd R.A., Yang W.-C., Goosen-de-Roo L., Mulders I.H.M., Roest H.P., Spaink H.P., Bisseling T., Lugtenberg B.J.J. 1994; Down-regulation of expression of the Rhizobium legumi- nosarum outer membrane protein gene ropA occurs abruptly in interzone II-III of pea nodules and can be uncoupled from nif gene activiation.. Mol Plant-Microbe Interact 7:276–281
    [Google Scholar]
  26. Martinez-Romero E., Segovia L., Mercante F.M., Franco A.A., Graham P.H., Pardo M.A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Eeucaena sp. trees.. Int J Syst Bacteriol 41:417–426
    [Google Scholar]
  27. Miller J.H. 1972 Experiments in Gene Fusions. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  28. Metcalf W.W., Wanner B.L. 1993; Construction of new β glucuronidase cassettes for making transcriptional fusions and their use with new methods for allele replacement.. Gene 129:17–25
    [Google Scholar]
  29. O’Brien T.P., von Teichman I. 1974; Autoclaving as an aid in the clearing of plant specimens.. Stain Technol 49:175–176
    [Google Scholar]
  30. Perret X., Broughton W.J., Brenner S. 1991; Canonical ordered cosmid library of the symbiotic plasmid of Rhizobiumspecies NGR234.. Proc Natl Acad Sci USA 881923–1927
    [Google Scholar]
  31. Platteeuw C., Simons G., de Vos W. 1994; Use of the Escherichia coli β-glucuronidase gene as a reporter gene for analyzing promoters in lactic acid bacteria.. Appl Environ Microbiol 60:587–593
    [Google Scholar]
  32. Quinto C., de la Vega H., Flores M., Leemans J., Angel Cevallos M., Aurelio Pardo M., Azpiroz R., de Lourdes Girard M., Calva E., Palacios R. 1985; Nitrogenase reductase, a functional multigene family in Rhizobium phaseoli. . Proc Natl Acad Sci USA 821170–1174
    [Google Scholar]
  33. Richardson A.E., Viccars E.A., Watson J.M., Gibson A.H. 1995; . Differentiation of Rhizobium strains using the polymerase chain reaction with random and directed primers.. Soil Biol Biochem 27:515–524
    [Google Scholar]
  34. Rothstein S.J., Reznikoff W.S. 1981; The functional differences in the inverted repeats of Tn5 are caused by a single base pair nonhomology.. Cell 23:191–199
    [Google Scholar]
  35. Russell D.R., Bennett G.N. 1982; Construction and analysis of in vivo activity of Escherichia coli promoter hybrids and promoter mutants that alter the —35 to —10 spacing.. Gene 20:231–241
    [Google Scholar]
  36. Sharma S.B., Signer E.R. 1990; Temporal and spatial regulation of the symbiotic genes of Rhfobium meliloti in planta revealed by transposon Tn5-gusA. . Genes Dev 4:344–356
    [Google Scholar]
  37. Simon R., Priefer U., Pühler A. 1983; A broad host-range mobilization system for in vivo genetic engineering, transposon mutagenesis in Gram-negative bacteria.. Bio/Technology 1:784–791
    [Google Scholar]
  38. Sobral B.W.S., Honeycutt R.J., Atherly A.G. 1991; The genomes of the family Rhizobiaceae: size, stability and rarely cutting restriction endonucleases.. J Bacteriol 173:704–709
    [Google Scholar]
  39. Stark M.J.R. 1987; Multicopy expression vectors carrying the lacrepressor gene for regulated high-level expression of genes in Escherichia coli. . Gene 51:255–267
    [Google Scholar]
  40. Stoeber F. 1961 Etudes des proprietes et de la biosynthese de la glucuronidase et de la glucuronide-permease chez Escherichia coli. These de Docteures-Sciences; Paris.:
    [Google Scholar]
  41. Streit W., Kosch K., Werner D. 1992; Nodulation competitiveness of Rhizobium leguminosarum bv. phaseoli and Rhizobium tropici strains measured by glucuronidase (GUS) gene fusions.. Biol Fertil Soils 14:140–144
    [Google Scholar]
  42. Streit W., Botero L., Werner D., Beck D. 1995; Competition for nodule occupancy on Phaseolus vulgaris by Rhizobium etli and Rhizobium tropici can be efficiently monitored in an ultisol during the early stages of growth using a constitutive GUS gene fusion.. Soil Biol Biochem 27:1075–1081
    [Google Scholar]
  43. Tör M., Mantell S.H., Ainsworth C. 1992; Endophytic bacteria expressing β-glucuronidase cause false positives in transformation of Dioscorea species.. Plant Cell Rep 11:452–456
    [Google Scholar]
  44. Trinick M.J. 1980; Relationships amongst the fast-growing rhizobia of Eablabpupureus, Eeucaena leucaphala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinites with other rhizobial groups.. J Appl Bacteriol 49:39–53
    [Google Scholar]
  45. Van den Eede G., Deblaere R., Goetals K., van Montagu M. 1992; Broad host range and promoter selection vectors for bacteria that interact with plants.. Mol Plant-Microbe Interact 5:228–234
    [Google Scholar]
  46. Vincent J.M. 1970 A Manual for the Practical Study of the Root- Nodule Bacteria. Oxford:: Blackwell Scientific Publications.;
    [Google Scholar]
  47. Wang Y.-P., Birkenhead K., Dobson A., Boesten B., O’Gara F. 1991; Sequences downstream from the transcriptional start site are essential for microaerobic, but not symbiotic, expression of the Rhizobium meliloti nifHDK promoter.. Mol Microbiol 5:157–162
    [Google Scholar]
  48. de Weger L.A., Dekkers L.C., van der Bij A.J., Lugtenberg B.J.J. 1994; Use of phosphate-reporter bacteria to study phosphate limitation in the rhizosphere and in bulk soil.. Mol Plant-Microbe Interact 7:32–38
    [Google Scholar]
  49. Wilson K.J. 1987 Host specificity of nodulation and nitrogen fixation in a Bradyrhizobium strain. PhD thesis; Harvard University.:
    [Google Scholar]
  50. Wilson K.J. 1995; Molecular techniques for the study of rhizobial ecology in the field.. Soil Biol Biochem 27:501–514
    [Google Scholar]
  51. Wilson K.J., Nambiar P.T.G, Anjaiah V., Ausubel F.M. 1987; Isolation and characterization of symbiotic mutants of Bradyrhizobium sp. (Arachis) strain NC92; mutants with host- specific defects in nodulation and nitrogen fixation.. J Bacteriol 169:2177–2186
    [Google Scholar]
  52. Wilson K.J., Giller K.E., Jefferson R.A. 1991; β-glucuronidase (GUS) operon fusions as a tool for studying plant-microbe interactions.. In Advances in Molecular Genetics of Plant-Microbe Interactions 1 pp. 226–229 Hennecke H., Verma D. P. S. Edited by Dordrecht, The Netherlands:: Kluwer Academic Publishers.;
    [Google Scholar]
  53. Wilson K.J., Hughes S.G., Jefferson R.A. 1992; The Escherichia coli gus operon, induction and expression of the gusoperon in E. coli and the occurrence and use of GUS in other bacteria.. In GUS Protocols, Using the GUS Gene as a Reporter of Gene Expression pp. 7–23 Gallagher S. Edited by New York:: Academic Press.;
    [Google Scholar]
  54. Wilson K.J., Sessitsch A., Akkermans A.D.L. 1994; Molecular markers as tools to study the ecology of microorganisms.. In Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities pp. 149–156 Ritz K., Dighton J., K. E. Giller. Edited by Chichester:: John Wiley.;
    [Google Scholar]
  55. Witty J.F., Skøt L., Revsbech N.P. 1987; Direct evidence for changes in the resistance of legume root nodules to O2 diffusion.. J Exp Bot 38:1129–1140
    [Google Scholar]
  56. Woodcock D.M., Crowther P.J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S.S., Michael M.A., Graham M.W. 1989; Quantitative evaluation of Escherichia colihost strains for tolerance to cytosine methylation in plasmid and phage recombinants.. Nucleic Acids Res 17:3469–3478
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-7-1691
Loading
/content/journal/micro/10.1099/13500872-141-7-1691
Loading

Data & Media loading...

Most cited Most Cited RSS feed