sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of to the genus comb. nov. with emendation of the genus Free

Abstract

A facultatively chemolithotrophic thiocyanate-degrading bacterium, strain THI 011, which was previously isolated from activated sludge and tentatively named sp., was studied taxonomically and phylogenetically. This bacterium utilizes thiocyanate as sole energy source and the specific growth rate for chemolithoautotrophic growth with thiocyanate was 0059 h. Molecular phylogenetic relationships of strain THI 011 to and members of the genus were elucidated by comparing 16S rRNA gene sequences. Binary sequence comparisons showed that strain THI 011 was most related to , at a similarity level of 970%, and was most similar to , at a level of 991%. A neighbour-joining phylogenetic tree showed that strain THI 011 formed a cluster together with and known species of the genus within the α-3 subclass of the DNA-DNA hybridization assays and phenotypic studies indicated that strain THI 011 differed from and known species of the genus On the basis of these results, we propose to classify strain THI 011 into a new species of the genus with the name sp. nov. We also propose to transfer to the genus and present an emended description of the genus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-6-1469
1995-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/6/mic-141-6-1469.html?itemId=/content/journal/micro/10.1099/13500872-141-6-1469&mimeType=html&fmt=ahah

References

  1. Beijerinck M.W. 1910; Bildung und Verbrauch von Stickoxydul durch Bakterien.. Zentralbl Bakteriol Parasitenkd Infektionskr Abt 2 25:30–63
    [Google Scholar]
  2. Betts P.M., Rinder D.F., Fleeker J.R. 1979; Thiocyanate utilization by an Arthrobacter. . Can J Microbiol 25:1277–1282
    [Google Scholar]
  3. Brosius J., Palmer M.L., Kennedy J.P., Noller H.F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci USA 754801–4805
    [Google Scholar]
  4. Davis D.H., Doudoroff M., Stanier R.Y. 1969; Proposal to reject the genus Hydrovenomonas: taxonomic implications.. Int J Syst Bacteriol 19:375–390
    [Google Scholar]
  5. Drobner E., Huber H., Rachel R., Stetter K.O. 1992; Thiobacillus plumbophilus spec, nov., a novel galena and hydrogen oxidizer.. Arch Microbiol 157:213–217
    [Google Scholar]
  6. Ezaki T., Dejsirilert S., Yamamoto H., Takeuchi N., Liu S., Yabuuchi E. 1988; Simple and rapid genetic identification of Eegionella species with photobiotin-labeled DNA.. J Gen Appl Microbiol 34:191–199
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap.. Evolution 39:783–791
    [Google Scholar]
  8. Happold F.C., Johnstone K.I., Rogers H.J., Youatt J.B. 1954; The isolation and characteristics of an organism oxidizing thiocyanate.. J Gen Microbiol 10:261–266
    [Google Scholar]
  9. Happold F.G, Jones G. L., Pratt D.B. 1958; Utilization of thiocyanate by Thiobacillus thioparus and T.thiocyanoxidans. . Nature 182:266–267
    [Google Scholar]
  10. Harrison A.P. Jr 1983; Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilium cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev.. Int J Syst Bacteriol 33:211–217
    [Google Scholar]
  11. Higgins D.G., Bleasby A.J., Fuchs R. 1992; CLUSTAL V: improved software for multiple sequence alignment.. Comput Appl Biosci 8:189–191
    [Google Scholar]
  12. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification.. Lett Appl Microbiol 15:210–213
    [Google Scholar]
  13. Hiraishi A., Ueda Y. 1994; Intrageneric structure of the genus Khodobacter: transfer of PJiodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov.. Int J Syst Bacteriol 44:15–23
    [Google Scholar]
  14. Hiraishi A., Hoshino Y., Satoh T. 1991; Khodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the ‘ Rhodocyclus gelatinosus-hke ’ group.. Arch Microbiol 155:330–336
    [Google Scholar]
  15. Hiraishi A., Shin Y.K., Ueda Y., Sugiyama J. 1994; Automated sequencing of PCR-amplified 16S rDNA on ‘ Hydrolink ’ gels.. J Microbiol Methods 19:145–154
    [Google Scholar]
  16. Huber H., Stetter K.O. 1990; Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal-mobilizing bacterium.. Appl Environ Microbiol 56:315–322
    [Google Scholar]
  17. Hutchinson M., Johnstone K.I., White D. 1969; Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole.. J Gen Microbiol 57:397–410
    [Google Scholar]
  18. Imhoff J.F. 1989; Genus Khodobacter Imhoff, Trüper and Pfennig 1984, 342vp.. In Bergefs Manual of Systematic Bacteriology 3 pp. 1668–1672 Edited by Staley J. T., Bryant M. P., Pfenning N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  19. Jackson J.F., Moriarty D.J.W., Nicholas D.J.D. 1968; Deoxyribonucleic acid base composition and taxonomy of thiobacilli and some nitrifying bacteria.. J Gen Microbiol 53:53–60
    [Google Scholar]
  20. Katayama Y., Kuraishi H. 1978; Characteristics of Thiobacillus thioparus and its thiocyanate assimilation.. Can J Microbiol 24:804–810
    [Google Scholar]
  21. Katayama Y., Narahara Y., Inoue Y., Amano F., Kanagawa T., Kuraishi H. 1992; A thiocyanate hydrolase of Thiobacillus thioparus: a novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate.. J Biol Chem 267:9170–9175
    [Google Scholar]
  22. Katayama-Fujimura Y., Kuraishi H. 1980; Characterization of Thiobacillus novellus and its thiosulfate oxidation.. J Gen Appl Microbiol 26:357–367
    [Google Scholar]
  23. Katayama-Fujimura Y., Tsuzaki N., Kuraishi H. 1982; Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. . J Gen Microbiol 128:1599–1611
    [Google Scholar]
  24. Katayama-Fujimura Y., Enokizono Y., Kaneko T., Kuraishi H. 1983a; Deoxyribonucleic acid homologies among species of the genus Thiobacillus. . J Gen Appl Microbiol 29:287–295
    [Google Scholar]
  25. Katayama-Fujimura Y., Kawashima I., Tsuzaki N., Kuraishi H. 1983b; Reidentification of Thiobacillus perometabolis ATCC 27793 and Thiobacillus sp. strain A2 with reference to a new species, Thiobacillus rapidicrescens sp. nov.. Ini J Syst Bacteriol 33:532–538
    [Google Scholar]
  26. Katayama-Fujimura Y., Kawashima I., Tsuzaki N., Kuraishi H. 1984a; Physiological characteristics of the facultatively chemo- lithotrophic Thiobacillus species, Thiobacillus delicatus nom. rev., emend., Thiobacillus perometabolis, and Thiobacillus intermedius. . Ini J Syst Bacteriol 34:139–144
    [Google Scholar]
  27. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984b; Estimation of DNA base composition by high performance liquid chromatography of its nuclease PI hydrolysate.. Agric Biol Chem 48:3169–3172
    [Google Scholar]
  28. Katayama-Fujimura Y., Tsuzaki N., Hirata A., Kuraishi H. 1984c; Polyhedral inclusion bodies (carboxysomes) in Thiobacillus species with reference to the taxonomy of the genus Thiobacillus. . J Gen Appl Microbiol 30:211–222
    [Google Scholar]
  29. Kelly D.P., Harrison A.P. 1989; Genus Thiobacillus Beijerinck 1904, 597AL.. In Bergey’s Manual of Systematic Bacteriology 3 pp. 1842–1858 Edited by Staley J. T., Bryant M. P., Pfenning N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  30. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences.. J Mol Evol 16:111–120
    [Google Scholar]
  31. Lane D.J., Harrison A.P. Jr Stahl D., Pace B., Giovannoni S.J., Olsen G.J., Pace N.R. 1992; Evolutionary relationships among sulfur- and iron-oxidizing eubacteria.. J Bacteriol 174:269–278
    [Google Scholar]
  32. Ludwig W., Mittenhuber G., Friedrich C. G. 1993; Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. . Int J Syst Bacteriol 43:363–367
    [Google Scholar]
  33. Marmur J. 1961; A procedure for the isolation of deoxy-ribonucleic acid from micro-organisms.. J Mol Biol 3:208–218
    [Google Scholar]
  34. Miller J.M., Dobson S.J., Franzmann P.D., McMeekin T.A. 1994; Reevaluating the classification of Paracoccus halodenitrificans with sequence comparisons of 16S ribosomal DNA.. Int J Syst Bacteriol 44:360–361
    [Google Scholar]
  35. Ohara M., Katayama Y., Tsuzaki M., Nakamoto S., Kuraishi H. 1990; Paracoccus kocurii sp. nov., a tetramethylammonium- assimilating bacterium.. Int J Syst Bacteriol 40:292–296
    [Google Scholar]
  36. Putilina N.T. 1961; Bacteria of sewage waters of coke factories oxidizing thiocyanate and cyanide compounds.. Mikrobiologiya 30:294–308 (in Russian)
    [Google Scholar]
  37. Robertson L.A., Kuenen J.G. 1992; The colorless sulfur bacteria.. In The Prokaryotes, 2nd edn,. 1 pp. 385–413 Edited by Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  38. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees.. Mol Biol Evol 4:406–425
    [Google Scholar]
  39. Stackebrandt E., Murray R.G.E., Trüper H.G. 1988; Proteo- bacteria classis nov., a name for the phylogenetic taxon that includes the ‘purple bacteria and their relatives’.. Int J Syst Bacteriol 38:321–325
    [Google Scholar]
  40. Stafford D.A., Callely A.G. 1969; The utilization of thiocyanate by a heterotrophic bacterium.. J Gen Microbiol 55:285–289
    [Google Scholar]
  41. Urakami T., Tamaoka J., Suzuki K., Komagata K. 1989; Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium.. Int J Syst Bacteriol 39:116–121
    [Google Scholar]
  42. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K. 1990; Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N, N´-dimethylformamide.. Int J Syst Bacteriol 40:287–291
    [Google Scholar]
  43. Vishniac W.V. 1974; Genus Thiobacillus. . In Sergey’s Manual of Determinative Bacteriology pp. 456–461 Edited by Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  44. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore LH., Moore W.E.C., Murray R.G.E., Stackebrandt E., Starr M.P., Trüper H.G. 1987; Report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics.. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  45. Woese C.R. 1987; Bacterial evolution.. Microbiol Rev 51:221–271
    [Google Scholar]
  46. Wood J.L. 1975; Biochemistry.. In Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives pp. 156–212 Edited by Newman A. A. London: Academic Press;
    [Google Scholar]
  47. Wood A.P., Kelly D.P. 1983; Use of carboxylic acids by Thiobacillus A2.. Microbios 38:15–25
    [Google Scholar]
  48. Youatt J.B. 1954; Studies on the metabolism of Thiobacillus thiocyanoxidans. . J Gen Microbiol 11:139–149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-6-1469
Loading
/content/journal/micro/10.1099/13500872-141-6-1469
Loading

Data & Media loading...

Most cited Most Cited RSS feed