1887

Abstract

A gene encoding catalase (hydrogen-peroxide: hydrogen-peroxide oxidoreductase; EC 1.11.1.6) from was cloned by functional complementation of a catalase-deficient mutant of . The catalase structural gene, designated , was assigned by subcloning and its nucleotide sequence determined. The deduced protein product of 508 amino acids, which had a calculated molecular mass of 58346 Da, was found to be structurally and enzymically similar to hydrogen-peroxidases from other bacterial species. The region of DNA containing the structural catalase gene was disrupted by insertion of a tetracycline-resistance marker and the modified sequence then introduced into a strain of via natural transformation. Genetic and enzymic analyses of a tetracycline-resistant transformant confirmed that catalase-deficient mutants had arisen via interspecific allelic exchange. Compared to the isogenic parental strain the mutant was more sensitive to killing by HO.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-6-1369
1995-06-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/6/mic-141-6-1369.html?itemId=/content/journal/micro/10.1099/13500872-141-6-1369&mimeType=html&fmt=ahah

References

  1. Belland R.J., Trust T.J. 1982; Deoxyribonucleic acid sequence relatedness between members of the genusCampylobacter. . J Gen Microbiol 128:2515–2522
    [Google Scholar]
  2. Bishai W.R., Smith H.O., Barcak G.J. 1994; A peroxide/ ascorbate-inducible catalase fromHaemophilus influenzae is homologous to theEscherichia coli kafE gene product.. J Bacterial 176:2914–2921
    [Google Scholar]
  3. Bol D.K., Yasbin R.E. 1991; The isolation, cloning, and identification of a vegetative catalase gene fromBacillus subtilis. . Gene 109:31–37
    [Google Scholar]
  4. Claiborne A., Fridovich I. 1979; Purification of the o-dianisidine peroxidase fromEscherichia coli B.. J Biol Chem 254:4245–4252
    [Google Scholar]
  5. DeShazer D., Wood G.E., Friedman R.L. 1994; Molecular characterization of catalase fromBordetella pertussis: identification of thekxitA promoter in an upstream insertion sequence.. Mol Microbiol 14:123–130
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  7. Dickinson J.H., Grant K.A., Park S.F. 1995; Targeted and random mutagenesis of theCampylobacter coli chromosome using integrational plasmid vectors.. Curr Microbiol (in press)
    [Google Scholar]
  8. Dower W.J., Miller J.F., Ragsdale C.W. 1988; High efficiency transformation ofE. coli by high voltage electroporation.. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  9. Farr S.B., Kogoma T. 1991; Oxidative stress responses inEscherichia coli andSalmonella typhimurium. . Microbiol Rev 55:561–585
    [Google Scholar]
  10. Gold L. 1988; Post-transcriptional regulatory mechanisms inEscherichia coli. . Annu Reu Biochem 57:199–233
    [Google Scholar]
  11. Griffiths P.L., Park R.W.A. 1990; Campylobacters associated with human diarrhoeal disease.. J Appl Bacterial 69:281–301
    [Google Scholar]
  12. Haas A., Goebel W. 1992; Microbial strategies to prevent oxygen dependent killing.. Eree Radical Res Commun 16:137–157
    [Google Scholar]
  13. Hawley D.K., McClure W.R. 1983; Compilation and analysis ofEscherichia coli DNA promoter sequences.. Nucleic Acids Res 11:2237–2255
    [Google Scholar]
  14. Hoffman P.S., George H.A., Kreig N.R., Smibert R.M. 1979a; Studies of the microaerophific nature ofCampylobacter fetus subsp. I. Physiolological aspects of enhanced aerotolerance.. Can J Microbiol 25:1–7
    [Google Scholar]
  15. Hoffman P.S., George H.A., Kreig N.R., Smibert R.M. 1979b; Studies of the microaerophilic nature ofCampylobacter fetus subsp. jejuni. II. Role of exogenous superoxide anions and hydrogen peroxide.. Can J Microbiol 25:8–16
    [Google Scholar]
  16. Humphrey T.J. 1992; Campylobacter jejuni: some aspects of epidemiology, detection and control.. Brit Food J 94:21–25
    [Google Scholar]
  17. Jones D.M., Sutcliffe E.M., Rios R., Fox A.J., Curry A. 1993; Campylobacter jejuni adapts to aerobic metabolism in the environment.. J Med Microbiol 38:145–150
    [Google Scholar]
  18. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  19. de Lorenzo V., Wee S., Herrero W., Neilands J.B. 1987; Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation(fur) repressor.. J Bacterial 169:2624–2630
    [Google Scholar]
  20. Mandell G.L. 1975; Catalase, superoxide dismutase, and virulence ofStaphylococcus aureus: in vitro andin vivo studies with emphasis on staphylococcal-leucocyte interaction.. J Clin Invest 55:561–566
    [Google Scholar]
  21. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning: a Eaboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  22. Mulvey M.R., Sorby P.A., Triggs-Raine B.L., Loewen P.C. 1988; Cloning and physical characterization ofkatE andkatF,required for catalase HPII expression inEscherichia coli. . Gene 73:337–345
    [Google Scholar]
  23. von Ossowski I., Mulvey M.R., Leco P.A., Borys A., Loewen P.C. 1991; Nucleotide sequence ofEscherichia coli katE which encodes catalase HPII.. J Bacterial 173:514–520
    [Google Scholar]
  24. von Ossowski I., Hausner G., Loewen P.C. 1993; Molecular evolutionary analysis based on the amino acid sequence of catalase.. J Mol Evol 37:71–76
    [Google Scholar]
  25. Pesci E.C., Cottle D.L., Pickett C.L. 1994; Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase ofCampylobacter jejuni. . Infect Immun 62:2687–2695
    [Google Scholar]
  26. Pick E., Keisari Y. 1980; A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture.. J Immunol Methods 38:161–170
    [Google Scholar]
  27. Pitcher D.G., Saunders N.A., Owen R.J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate.. Eett Appl Microbiol 8:151–156
    [Google Scholar]
  28. Purdy D., Park S.F. 1994; Cloning, nucleotide sequence and characterization of a gene encoding superoxide dismutase fromCampylobacter jejuni andCampylobacter coli. . Microbiology 140:1203–1208
    [Google Scholar]
  29. Sha Z., Stabel T.J., Mayfield J.E. 1994; Brucella abortus catalase is a periplasmic protein lacking a standard signal sequence.. J Bacterial 176:7375–7377
    [Google Scholar]
  30. Tauxe R.V. 1992; Epidemiology ofCampylobacter jejuni in the United States and other industriaUsed nations.. In Campylobacter jejuni: Current Status and Future Trends, pp. 9–19 Nachamkin I., Blaser M. J., Tompkins. L. S. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  31. Vercellone P.A., Smibert R.M., Kreig N.R. 1990; Catalase activity inCampylobacter jejuni: comparison of a wild-type strain with an aerotolerant variant.. Can J Microbiol 36:449–451
    [Google Scholar]
  32. Wang Y., Taylor D.E. 1990; Natural transformation inCampylobacter species.. J Bacterial 172:949–955
    [Google Scholar]
  33. Wayne L.G., Diaz A.G. 1986; A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide gels.. Anal Biochem 157:89–92
    [Google Scholar]
  34. Woodbury W., Spencer A.K., Stahman M.A. 1971; An improved procedure using ferricyanide for detecting catalase isoenzymes.. Anal Biochem 44:301–305
    [Google Scholar]
  35. Wooldridge K.G., Williams P.H., Ketley J.M. 1994; Iron- responsive genetic regulation inCampylobacter jejuni: cloning and characterization of afur homolog.. J Bacterial 176:5852–5856
    [Google Scholar]
/content/journal/micro/10.1099/13500872-141-6-1369
Loading
/content/journal/micro/10.1099/13500872-141-6-1369
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error