1887

Abstract

Summary: Strain ASV2, an unidentified Gram-negative bacterium newly isolated from activated sludge, was found to utilize arsonoacetate at concentrations up to at least 30 mM as sole carbon and energy source, with essentially quantitative extracellular release of arsenate. Cell-free conversion of arsonoacetate could not be obtained, but resting-cell studies indicated that the carbon-arsenic bond cleavage activity was inducible in the presence of arsonoacetate and was of limited substrate specificity, also breaking down arsonochloroacetate. The inorganic product of the reaction may be arsenite since an inducible arsenite-oxidizing activity was also found in arsonoacetate-metabolizing cells. This is the first report of a micro-organism capable of utilizing a compound containing the carbon-arsenic bond. The results indicate that the ability of bacteria to degrade arsonoacetate is not fortuitous and may be found in environments not previously exposed to organoarsenicals.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-3-721
1995-03-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/3/mic-141-3-721.html?itemId=/content/journal/micro/10.1099/13500872-141-3-721&mimeType=html&fmt=ahah

References

  1. Abernathy J. R. 1983; Role of arsenical chemicals in agriculture. In Arsenic: Industrial, Biomedical, Environmental Perspectives pp. 57–62 Edited by Lederer W. H., Fensterheim R. J. New York: Van Nostrand Reinhold;
    [Google Scholar]
  2. Anderson G. L., Williams J. , Hille R. . 1992; The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682
    [Google Scholar]
  3. Andreae M. O. 1986; Organoarsenic compounds in the environment. In Organometallic Compounds in the Environment: Principles and Reactions pp. 198–228 Edited by Craig P. J. Harlow: Longman.:
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Calkins V. P. 1943; Microdetermination of glycolic and oxalic acids. Ind Eng Chem 15:762–763
    [Google Scholar]
  6. Collins C. H., Lyne P. M. 1976; Biochemical methods. In Microbiological Methods, pp. 167–178 Edited by Collins C. H., Lyne P. M. London: Butterworths;
    [Google Scholar]
  7. Cook A. M. 1988; Combined carbon and phosphorus or carbon and sulphur substrates. In Mixed and Multiple Substrates and Feedstocks pp. 71–83 Edited by Hamer G. , Egli T. , Snozzi M. . Konstanz: European Biotechnology Federation;
    [Google Scholar]
  8. Cullen W. R., Reimer K. J. 1989; Arsenic speciation in the environment. Chem Rev 89:713–764
    [Google Scholar]
  9. Edmonds J. S., Francesconi K. A. 1987; Transformations of arsenic in the marine environment. Experientia 43:553–557
    [Google Scholar]
  10. Francesconi K. A., Edmonds J. S. 1993; Arsenic in the sea. Oceanogr Mar Biol Annu Rev 31:111–151
    [Google Scholar]
  11. Gadd G. M. 1993; Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316
    [Google Scholar]
  12. Geoghegan K. F., Dixon H. B. F. 1989; Synthesis of 2-aminoethylarsonic acid. A new synthesis of primary amines. Biochem J 260:295–297
    [Google Scholar]
  13. Green H. H. 1918; Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank. South African J Sci 14:465–467
    [Google Scholar]
  14. Hanaoka K. T., Matsumoto S., Tagawa S. , Kaise T. . 1987; Microbial degradation of arsenobetaine, the major water-soluble organoarsenic compound occurring in marine animals. Chemosphere 16:2545–2550
    [Google Scholar]
  15. Hanaoka K. T., Hasegawa S., Kawabe N., Tagawa S. , Kaise T. . 1991; Aerobic and anaerobic degradation of several arsenicals by sedimentary microorganisms. Appl Organomet Chem 4:239–243
    [Google Scholar]
  16. Hanaoka K. T., Tagawa S. , Kaise T. . 1992; The degradation of arsenobetaine to inorganic arsenic by sedimentary microorganisms. Hydrobiologia 235/236:623–628
    [Google Scholar]
  17. Ji G., Silver S. . 1992; Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci USA: 89:9474–9478
    [Google Scholar]
  18. Krieg N. R. 1981; Enrichment and isolation. In Manual of Methods for General Bacteriology pp. 112–142 Edited by Gerhardt P. , Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. . Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Lacoste A.-M., Dumora C., Ali B. R. S., Neuzil E. , Dixon H. B. F. 1992; Utilization of 2-aminoethylarsonic acid in Pseudomonas aeruginosa. . J Gen Microbiol 138:1283–1287
    [Google Scholar]
  20. McMullan G. , Quinn J. P. 1994; In vitro characterization of a phosphate starvation-independent carbon-phosphorus bond cleavage activity in Pseudomonas fluorescens 23F. J Bacteriol 176:320–324
    [Google Scholar]
  21. McMullan G. , Watkins R. , Harper D. B., Quinn J. P. 1991; Carbon-phosphorus bond cleavage activity in cell-free extracts of Enterobacter aerogenes ATCC 15038 and Pseudomonas sp. 4ASW. Biochem Int 25:271–279
    [Google Scholar]
  22. Metcalf W. W., Wanner B. L. 1991; Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters and Pi . J Bacteriol 173:587–600
    [Google Scholar]
  23. Osborne F. H., Ehrlich H. L. 1976; Oxidation of arsenite by a soil isolate of Alcaligenes. . J Appl Bacteriol 41:295–305
    [Google Scholar]
  24. Phillips S. E., Taylor M. L. 1976; Oxidation of arsenite to arsenate by Alcaligenes faecalis. . Appl Environ Microbiol 32:392–399
    [Google Scholar]
  25. Quick A. J., Adams R. . 1922; Aliphatic arsonic and arsinic acids, and aliphatic-aromatic arsinic acids. J Am Chem Soc 44:805–816
    [Google Scholar]
  26. Segers P. , Vancanneyt M. , Pot B. , Torck U. , Hoste B. , Dewettinck D. , Falsen E., Kersters K. , De Vos P. . 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll and Freytag 1953 in Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov. respectively. Int J Syst Bacteriol 44:499–510
    [Google Scholar]
  27. Sehlin H. M., Lindstrom E. B. 1992; Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93:87–92
    [Google Scholar]
  28. Shariatpahani M. , Anderson A. , Abdelghani A. A., Englande A. J. 1983; Microbial metabolism of an organic arsenical herbicide. In Biodeterioration 5 pp. 268–277 Edited by Oxley T. A., Barry S. . Chichester: John Wiley;
    [Google Scholar]
  29. Sparkes M. J., Dixon H. B. F. . 1995; Preparation of substituted methylarsonic and arsonoacetic acids. [Appendix to this paper. J Microbiology 141:726–727
    [Google Scholar]
  30. Tamaki S. , Frankenberger W. T. 1992; Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110
    [Google Scholar]
  31. Thayer J. S. 1993; Global bioalkylation of the heavy elements. Metal Ions Biol Syst 29:1–36
    [Google Scholar]
  32. Turner A. W., Legge J. W. 1954; Bacterial oxidation of arsenite. 2: The activity of washed suspensions. Aust J Biol Sci 7:479–495
    [Google Scholar]
  33. Von Endt D. W., Kearney P. C., Kaufman D. D. 1968; Degradation of monosodium methanearsonic acid by soil micro-organisms. J Agric Food Chem 16:17–20
    [Google Scholar]
  34. Wanner B. L., Metcalf W. W. 1992; Molecular studies of a 10·9-kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Microbiol Lett 100:133–140
    [Google Scholar]
  35. Williams J. W., Silver S. . 1984; Bacterial resistance and detoxification of heavy metals. Enzyme Microb Technol 6:530–537
    [Google Scholar]
  36. Adams S. R., Sparkes M. J., Dixon H. B. F. 1984; The arsonomethyl analogue of adenosine 5’-phosphate. Biochem J 221:829–836
    [Google Scholar]
  37. Ambler R. P. 1963; The amino acid sequence of Pseudomonas cytochrome c-551 . Biochem J 89:349–378
    [Google Scholar]
  38. Meyer G. . 1883; Ueber einige anomale Reaktionen. Ber Dtsch Chem Ges 16:1439–1443
    [Google Scholar]
  39. Palmer C. S. 1925; Arsono- and arsenoacetic acids. Org Synth 4, 5-7 (Org Synth Coll vol 1: pp. 66–67
    [Google Scholar]
  40. Rozovskaya T. A., Rechinsky V. O., Bibilashvili R. Sh., Karpeisky M. Ya, Tarusova N. B., Khomutov R. M., Dixon H. B. F. 1984; The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Biochem J 224:645–650
    [Google Scholar]
  41. Schwarzenbach G. , Ackermann H. , Ruckstuhl P. . 1949; Neue Derivate der Iminodiessigsäure und ihre Erdalkalikomplexe. Bezie-hungen zwischen Acidität Komplexbildung. Helv Chim Acta 32:1175–1186
    [Google Scholar]
  42. Wade H. E., Morgan D. M. 1953; Detection of phosphate esters on paper chromatograms. Nature 171:529–530
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-3-721
Loading
/content/journal/micro/10.1099/13500872-141-3-721
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error