Mini-chromosomes in are mosaics of dispersed repeats and unique sequences Free

Abstract

Summary:

Variations in trichothecene patterns of 26 isolates from different plant and geographic origins showed no corresprelation with electrophoretic karyotype polymorphisms. When intact chromosomes were examined, interisolate karyotype differences were observed only in the mini-chromosome range. Further polymorphisms were revealed in -digested samples. By summing the fragments the average genome size of F. sporotrichioides was estimated to be 20.4 Mb. Mini-chromosomes shared common sequences with the larger ones; however, clones (RMS-1 and RMS-2) specific to these structures have also been found. These clones contained no coding region and no promising similarities were observed when they were compared to sequences held at GenBank. Mini-chromosomes in constitute a mosaic composed of dispersed repeats and unique sequences. This mosaic structure was maintained in all non-interbreeding, genetically isolated strains examined.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-3-713
1995-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/3/mic-141-3-713.html?itemId=/content/journal/micro/10.1099/13500872-141-3-713&mimeType=html&fmt=ahah

References

  1. Carter G. L, Allison D., Rey M. W., Dunn-Coleman N. S. 1992; Chromosomal and genetic analysis of the electrophoretic karyotype of Trichoderma reesei·. mapping of the cellulase and xylanase genes. Mol Microbiol 6:2167–2174
    [Google Scholar]
  2. Chelkowski J., Visconti A., Solfrizzo M., Bottalico A. 1984; Formation of mycotoxins by Fusarium species from cereals in Poland. Phytopath Mediterr 23:43–46
    [Google Scholar]
  3. Cooley R. N., Caten C. E. 1991; Variation in electrophoretic karyotype between strains of Septoria nodorum . Mol Gen Genet 228:17–23
    [Google Scholar]
  4. Cullen D., Smalley E. B., Dimond R. L. 1983; Heterokaryosis in Fusarium tricinctum and F. sporotrichioides . J Gen Microbiol 129:3035–3041
    [Google Scholar]
  5. Debets A. J. M., Holub E. F., Swart K., van den Broek H. W. J., Bos C. J. 1990; An electrophoretic karyotype of Aspergillus niger . Mol Gen Genet 224:264–268
    [Google Scholar]
  6. Fekete C., Nagy R., Debets A. J. M., Hornok L. 1993; Electrophoretic karyotypes and gene mapping in eight species of the Fusarium sections Arthrosporiella and Sporotrichiella. Curr Genet 24:500–504
    [Google Scholar]
  7. Hohn T. M., Beremand P. D. 1989; Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene- producing fungus Fusarium sporotrichioides . Gene 79:131–138
    [Google Scholar]
  8. Keller N. P., Cleveland T. E., Bhatnagar D. 1992; Variable electrophoretic karyotypes of members of Aspergillus section Flavi . Curr Genet 21:371–375
    [Google Scholar]
  9. Kientz C. E., Verweij A. 1986; Trimethylsilylation and trifluoroacetylation of a number of trichothecenes followed by gas chromatographic analysis on fused-silica capillary columns. J Chromatogr 355:229–240
    [Google Scholar]
  10. Kim D. G., Martyn R. D., Magill C. W. 1993; Chromosomal polymorphism in Fusarium oxysporum f. sp.niveum . Phytopathology 83:1209–1216
    [Google Scholar]
  11. Kinscherf T. G., Leong S. A. 1988; Molecular analysis of the karyotype of Ustilago maydis . Chromosoma 96:427–433
    [Google Scholar]
  12. Kistler H. C., Miao V. P. W. 1992; New modes of genetic change in filamentous fungi. Annu Ren Phytopathol 30:131–152
    [Google Scholar]
  13. Lee U.-S., Jang H.-S., Tanaka T., Toyasaki N., Sugiura Y., Oh Y.-J., Cho C.-M., Ueno Y. 1986; Mycological survey of Korean cereals and production of mycotoxins by Fusarium isolates. Appl Environ Microbiol 52:1258–1260
    [Google Scholar]
  14. Logrieco A., Chelkowski J., Bottalico A., Visconti A. 1990; Further data on specific trichothecene production by Fusarium sectSporotrichiella strains. Mycol Res 94:587–589
    [Google Scholar]
  15. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Eaboratory Manual . Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Masel A., Braithwaite K., Irwin J., Manners J. 1990; Highly variable molecular karyotypes in the plant pathogen Colletotrichum gloeosporioides. . Curr Genet 18:81–86
    [Google Scholar]
  17. Masel A. M., Irwin J. A. G., Manners J. M. 1993; DNA addition or deletion is associated with a major karyotype polymorphism in the fungal phytopathogen Colletotrichum gloeosporioides. . Mol Gen Genet 237:73–80
    [Google Scholar]
  18. Miao V. P. W., Matthews D. E., VanEtten H. D. 1991; Identification and chromosomal locations of a family of cytochrome P-450 genes for pisatin detoxification in the fungus Nectria haematococca. . Mol & Gen Genet 226:214–223
    [Google Scholar]
  19. Nagy R., Hornok L. 1994; Electrophoretic karyotype differences between two subspecies of Fusarium acuminatum . Mycologia 86:203–208
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning-, a Eaboratory Manual . Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  22. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. 1988; λ-ZAP: a bacteriophage λ expression vector with in vivo excision properties. Nucleic Acids Rer 16:7583–7600
    [Google Scholar]
  23. Skatrud P. L., Queener S. W. 1989; An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium . Gene 78:331–338
    [Google Scholar]
  24. Smith A. W., Collis K., Ramsden M., Fox H. M., Peberdy J. F. 1991; Chromosome rearrangements in improved cephalosporin C-producing strains of Acremonium chrysogenum . Curr Genet 19:235–237
    [Google Scholar]
  25. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
    [Google Scholar]
  26. Sugiura Y., Watanabe Y., Tanaka T., Yamamoto S., Ueno Y. 1990; Occurrence of Gibberella zeae strains that produce both nivalenol and deoxynivalenol. Appl Environ Microbiol 56:3047–3051
    [Google Scholar]
  27. Suzuki T., Miyamae Y., Ishida I. 1991; Variation of colony morphology and chromosomal rearrangement in Candida tropicalis pK233. J Gen Microbiol 137:161–167
    [Google Scholar]
  28. Talbot N. J., Oliver R. P., Coddington A. 1991; Pulsed field gel electrophoresis reveals chromosome length differences between strains of Cladosporium fulvum (syn. Fulvia fulva. Mol Gen Genet 229:267–272
    [Google Scholar]
  29. Thrane U. 1986; Detection of toxigenic Fusarium isolates by thin layer chromatography. Eett Appl Microbiol 3:93–96
    [Google Scholar]
  30. Thrane U. 1989 Fusarium species and their specific profiles of secondary metabolites. In Fusarium Mycotoxins, Taxonomy and Pathogenicity. Topics in Secondary Metabolism pp 199–225 Edited by Chelkowski J. Amsterdam: Elsevier;
    [Google Scholar]
  31. Visconti A., Mirocha C. J., Bottalico A., Chelkowski J. 1985; Trichothecene mycotoxins produced by Fusarium sporotrichioides strain P-11. Mycotoxin Res 1:3–10
    [Google Scholar]
  32. Walz M., Kück U. 1991; Polymorphic karyotypes in related Acremonium strains. Curr Genet 19:73–76
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-3-713
Loading
/content/journal/micro/10.1099/13500872-141-3-713
Loading

Data & Media loading...

Most cited Most Cited RSS feed