1887

Abstract

Summary:

Stress tolerance of was examined after exposure to heat and salt shock in the presence or absence of the protein synthesis inhibitor cycloheximide. Cells heat-shocked (37 °C for 45 min) in the absence of cycloheximide demonstrated increased tolerance of heat, freezing and salt stress. For cells heat-shocked in the presence of cycloheximide, heat and salt tolerance could still be induced, although at lower levels, while induction of freezing tolerance was completely inhibited. These results indicated that while heat shock proteins (hsps) may contribute to induced heat and salt tolerance they are not essential, although induction of freezing tolerance appears to require protein synthesis. Exposure of cells to salt shock (300 mM NaCI for 45 min) induced stress protein synthesis and the accumulation of glycerol, responses analogous to induction of hsp synthesis and trehalose accumulation in cells exposed to heat shock. Cells salt-shocked in the absence of cycloheximide showed a similar pattern of induced stress tolerance as with heat, with increased tolerance of heat, salt and freezing. Cells salt-shocked in the presence of cycloheximide continued to show induced heat and salt tolerance, but freezing tolerance could not be induced. These results lend support to the hypothesis that hsp synthesis is not essential for induced tolerance of some forms of stress and that accumulated solutes such as trehalose or glycerol may contribute to induced stress tolerance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-3-687
1995-03-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/3/mic-141-3-687.html?itemId=/content/journal/micro/10.1099/13500872-141-3-687&mimeType=html&fmt=ahah

References

  1. Attfield P.V. 1987; Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response.. FEBS Lett 225:259–263
    [Google Scholar]
  2. Back J. F., Oakenfull D., Smith M. B. 1979; Increased thermal stability of proteins in the presence of sugars and polyols.. Biochemistry 18:5191–5196
    [Google Scholar]
  3. Bhagwat A. A., Apte S. K. 1989; Comparative analysis of proteins induced by heat shock, salinity, and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31.. J Bacteriol 171:5187–5189
    [Google Scholar]
  4. Blomberg A., Adler L. 1993; Tolerance of fungi to NaCl.. In Stress Tolerance of Fungi pp 209–231 Edited by Dennings H. J. New York: Marcel Dekker.;
    [Google Scholar]
  5. Blomberg A., Larsson C., Gustafsson L. 1988; Micro- calorimetric monitoring of growth of Saccharomyces cerevisiae: osmotolerance in relation to physiological state.. J Bacteriol 1704562–4568
    [Google Scholar]
  6. Bossier P., Fitch I. T., Boucherie H., Tuite M. F. 1989; Structure and expression of a yeast gene encoding the small heat- shock protein hsp26.. Gene 78:323–330
    [Google Scholar]
  7. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Anal Biochem 72:248–254
    [Google Scholar]
  8. Brown A. D. 1990 Microbial Water Stress Physiology. Chichester: Wiley;
    [Google Scholar]
  9. Coutinho C., Bernardes E., Felix D., Panek A. D. 1988; Trehalose as a cryoprotectant for preservation of yeast strains.. J Biotechnol 7:23–32
    [Google Scholar]
  10. Craig E. A., Gambill B. D., Nelson R. J. 1993; Heat shock proteins: molecular chaperones of protein biogenesis.. Microbiol Rev 57:402–414
    [Google Scholar]
  11. Crowe J. H., Hoekstra F. A., Crowe L. M. 1992; Anhydro- biosis.. Annu Rev Physiol 54:579–599
    [Google Scholar]
  12. D’Amore T., Crumplen R., Stewart G. G. 1991; The involvement of trehalose in yeast stress tolerance.. J Ind Microbiol 7:191–196
    [Google Scholar]
  13. De Virgilio C., Simmen U., Hottiger T., Boller T., Wiemken A. 1990; Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide.. FEBS Lett 273:107–110
    [Google Scholar]
  14. De Virgilio C., Piper P., Boller T., Wiemken A. 1991; Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis.. FEBS Lett 288:86–90
    [Google Scholar]
  15. Hall B. G. 1983; Yeast thermotolerance does not require protein synthesis.. J Bacteriol 156:1363–1365
    [Google Scholar]
  16. Harrington H. M., Alm D. M. 1988; Interaction of heat and salt shock in cultured tobacco cells.. Flant Physiol 88:618–625
    [Google Scholar]
  17. Henle K. J., Nagle W. A., Moss A. J., Herman T. S. 1982; Polyhydroxy compounds and thermotolerance: a proposed concatenation.. Radiat Res 92:445–451
    [Google Scholar]
  18. Hottiger T., Boller T., Wiemken A. 1987; Rapid changes of heat and desiccation tolerance with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts.. FEBS Lett 220:113–115
    [Google Scholar]
  19. Hottiger T., Boller T., Wiemken A. 1989; Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant?. FEBS Lett 255:431–434
    [Google Scholar]
  20. Hottiger T., De Virgilio C., Bell W., Boller T., Wiemken A. 1992; The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae. . Ear J Biochem 210:125–132
    [Google Scholar]
  21. Karow A. M. 1991; Chemical cryoprotection of metazoan cells.. Bioscience 41:155–160
    [Google Scholar]
  22. Kim D., Lee Y. J. 1993; Effect of glycerol on protein aggregation: quantitation of thermal aggregation of proteins from CHO cells and analysis of aggregated proteins.. J Therm Biol 18:41–48
    [Google Scholar]
  23. Komatsu Y., Kaul S. C., Iwahashi H., Obuchi K. 1990; Do heat shock proteins provide protection against freezing?. FEMS Microbiol Lett 72:159–162
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  25. Lewis J. G., Learmonth R. P., Watson K. 1993a; The role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. . Appl Environ Microbiol 59:1065–1071
    [Google Scholar]
  26. Lewis J. G., Northcott C. J., Learmonth R. P., Attfield P. V., Watson K. 1993b; The need for consistent nomenclature and assessment of growth phases in diauxic cultures of Saccharomyces cerevisiae. . J Gen Microbiol 139:835–839
    [Google Scholar]
  27. Lewis J. G., Learmonth R. P., Watson K. 1994; Cryoprotection of yeast by alcohols during rapid freezing.. Cryobiology 31:193–198
    [Google Scholar]
  28. Lindquist S., Craig E. A. 1988; The heat shock proteins.. Annu Rev Genet 22:631–677
    [Google Scholar]
  29. McAlister L., Finkelstein D. B. 1980; Heat shock proteins and thermal resistance in yeast.. Biochem Biophys Res Commun 3:819–824
    [Google Scholar]
  30. McAlister L., Strausberg S., Kulaga A., Finkelstein D. B. 1979; Altered patterns of protein synthesis induced by heat shock of yeast.. Curr Genet 1:63–74
    [Google Scholar]
  31. Mackenzie K. F., Singh K. K., Brown A. D. 1988; Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. . J Gen Microbiol 134:1661–1666
    [Google Scholar]
  32. Neves M.-J., Francois J. 1992; On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. . Biochem J 288:859–864
    [Google Scholar]
  33. Panek A. C., Vania J. J. M., Paschoalin M. F., Panek D. 1990; Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts.. Biochimie 72:77–79
    [Google Scholar]
  34. Piper P. W. 1993; Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. . FEMS Microbiol Rev 11:339–56
    [Google Scholar]
  35. Sanchez Y., Lindquist S. L. 1990; HSP104 required for induced thermotolerance.. Science 248:1112–1115
    [Google Scholar]
  36. Sanchez Y., Taulien J., Borkovich K. A., Lindquist S. 1992; Hspl04 is required for tolerance to many forms of stress.. EMBO J 11:2357–2364
    [Google Scholar]
  37. Schindler D., Davies J. 1975; Inhibitors of macromolecular synthesis in yeast.. Methods Cell Biol 12:17–38
    [Google Scholar]
  38. Smith B. J., Yaffe M. P. 1991; Uncoupling thermotolerance from the induction of heat shock proteins.. Proc Natl Acad Sci USA 88:11091–11094
    [Google Scholar]
  39. Trollmo C., Andre L., Blomberg A., Adler L. 1988; Physiological overlap between osmotolerance and thermotolerance in Saccharomyces cerevisiae.. FEMS Microbiol Lett 56:321–326
    [Google Scholar]
  40. Varela J. C. S., Van Beekvelt C., Planta R. J., Mager W. H. 1992; Osmostress-induced changes in yeast gene expression.. Mol Microbiol 6:2183–2190
    [Google Scholar]
  41. Volker U., Mach H., Schmid R., Hecker M. 1992; Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis.. J Gen Microbiol 138:2125–2135
    [Google Scholar]
  42. Watson K. 1990; Microbial stress proteins.. Adv Microb Physiol 31:183–223
    [Google Scholar]
  43. Watson K., Dunlop G., Cavicchioli R. 1984; Mitochondrial and cytoplasmic protein synthesis are not required for heat shock acquisition of ethanol and thermotolerance in yeast.. FEBS Lett 172:299–302
    [Google Scholar]
  44. Webster D. L., Watson K. 1993; Ultrastructural changes in yeast following heat shock and recovery.. Yeast 9:1165–1175
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-3-687
Loading
/content/journal/micro/10.1099/13500872-141-3-687
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error