1887

Abstract

Summary

A miniature electrode was used to measure, for the first time, the time-dependent change in dissolved oxygen concentration of small-scale cultures of two actinomycete species at various aeration efficiencies in both complex and defined media. Erythromycin was produced in both oxygen-limited and oxygen-sufficient conditions in shaken flask and inclined tube cultures of and a further, novel, secondary metabolite was produced only under oxygen limitation. In contrast, vancomycin was only produced in oxygen-sufficient cultures of . Similar results were obtained in batch bioreactor cultures. These findings indicate that oxygen limitation acts in an analogous manner to substrate limitation imposed by dissolved nutrients, stimulating secondary metabolite production in some cases and inhibiting it in others. The implications of these findings in screening programmes for novel secondary metabolites are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-3-663
1995-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/3/mic-141-3-663.html?itemId=/content/journal/micro/10.1099/13500872-141-3-663&mimeType=html&fmt=ahah

References

  1. Brown D. E. 1970; Aeration in the submerged culture of micro-organisms. Methods Microbiol l2:125–174
    [Google Scholar]
  2. Bu’Lock J. D. 1974 Secondary metabolism of microorganisms. In Industrial Aspects of Microorganisms 1 pp 335–345 Edited by Spencer B. Amsterdam: Elsevier;
    [Google Scholar]
  3. Bushell M. E. 1983 Microbiological aspects of the discovery of novel secondary metabolites. In Topics in Enzyme and Fermentation Biotechnolog 6 pp 32–67 Edited by Wiseman A. Glasglow: Blackie;
    [Google Scholar]
  4. Bushell M.E. 1988; Growth, metabolism and fermentation technology. In Biotechnology of the Actinomycetale pp 185–215 Edited by Goodfellow M., Williams S. T., Mordarski M. London: Academic Press;
    [Google Scholar]
  5. Bushell M. E. 1989 The process physiology of secondary metabolite production. In Microbial products : New Approaches (Society for General Microbiology Symposium no.44) pp 95–120 Edited by Baumberg S., Hunter I. S., Rhodes P. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  6. Bushell M. E., Bell S. L., Scott M. F., Snell K., Spier R. E., Wardell J. N., Sanders P. J. 1993; A three phase pattern in growth, monoclonal antibody production and metabolite exchange in a hybridoma bioreactor culture. Biotechnol Bioeng 42:133–139
    [Google Scholar]
  7. Chen H. C., Wilde F. 1991; The effect of dissolved oxygen and aeration rate on antibiotic production of Streptomyces fradiae . Biotechnol Bioeng 37:591–595
    [Google Scholar]
  8. Demain A. L. 1986 Control of secondary metabolism in Actino-mycetes. In Biological , Biochemical and Biomedical Aspects of Actinomycetes proceedings of the sixth International Symposium on Actinomycetes Biology ,Debrecen, Hungay pp 215–225 Edited by Szabo G., Biro S., Goodfellow M. Budapest: Academiai Kiado;
    [Google Scholar]
  9. Freedman D. 1970; The shaker in bioengineering. Methods microbiol 2:175–185
    [Google Scholar]
  10. Huck T. A., Porter N., Bushell M. E. 1991; Positive selection of antibiotic-producing soil isolates. J Gen Microbiol 137:2321–2329
    [Google Scholar]
  11. Královcová E., Vanek Z. 1979; Effect of aeration efficiency and carbon source on the production of anthrocyclines in Streptomyces galilaeus . Folia Microbiol 24:301–307
    [Google Scholar]
  12. Lechevalier M. P., Lechevalier H. A. 1981 Introduction to the order Actinomycetales . In The Prokaryotes pp 1915–1922 Edited by Starr M. P., Stolp M., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer-Verlag;
    [Google Scholar]
  13. McDaniel L. E., Bailey E. G. 1969; Effect of shaking speed and type of closure on shake flask cultures. Appl Microbiol 17:286–290
    [Google Scholar]
  14. McDermott J. F., Lethbridge G., Bushell M. E. 1993; Estimation of the kinetic constants and elucidation of trends in growth and erythromycin production in batch and continuous cultures of Saccharopobspora eythraea using curve-fitting techniques. Enzyme Microb Technol 15:657–663
    [Google Scholar]
  15. Morimoto T., Itoh H., Chibata I. 1979; Shaking method for tube cultures of microorganisms. Agric Biol Chem 43:15–18
    [Google Scholar]
  16. Nisbet L. J. 1982; Current strategies in the search for bioactive microbial metabolites. J Chem Technol Biotechnol 32:251–270
    [Google Scholar]
  17. Oner M. D., Erickson L. E., Young S. S. 1986; Utilisation of spline functions for smoothing fermentation data and for estimation of specific rates. Biotechnol Bioeng 28:902–918
    [Google Scholar]
  18. Pirt S. J. 1965; Maintenance energy of bacteria in growing cultures. Proc R soc Lond B 163:224–231
    [Google Scholar]
  19. Pollitzer L. T., Soutter L. T., Reynolds E. O. R. 1980; Continuous monitoring of natal oxygen tension in infants Four years of experience with an intravascular oxygen electrode. Paediatrics 66:31–36
    [Google Scholar]
  20. Rollins M. J., Jensen S. E., Westlake D. W. S. 1988; Effect of aeration on antibiotic production by Streptomyces clavuligerus . J Ind Microbiol 3:357–364
    [Google Scholar]
  21. Rollins M. J., Jensen S. E., Wolfe S., Westlake D. W. S. 1990; Oxygen derepresses deacetoxycephalosporin C synthase and increases the conversion of penicillin N to cephamycin C in Streptomyces clavuligerus . Enzme Microb Technol 12:40–45
    [Google Scholar]
  22. Sanglier J. J., Haag H., Huck T. A., Fehr T. 1993; Novel bioactive compounds from Actinomycetes: a short review (1988-1992). Res Microbiol 144:633–642
    [Google Scholar]
  23. Stanbury P. F., Whitaker A. 1984 Principles of Fermentation Oxford; Pergamon Press:
    [Google Scholar]
  24. Tsuji K., Goetz J. F. 1978; High performance liquid chroma-tographic determination of erythromycin. J Chromatogr 147:359–367
    [Google Scholar]
  25. Tunac J. B. 1989; High-aeration capacity shake-flask system. J Ferment Bioeng 68:157–159
    [Google Scholar]
  26. Uchida M., Sawada H., Asai T., Suzuki M. 1981; Effect of inorganic phosphate and dissolved oxygen on production of maridomycin. J ferment Technol 59:399–401
    [Google Scholar]
  27. Vandamme E. J., Leyman D., DeVisscher P., DeBuyser D., Vansteenklste G. 1981; Effect of aeration and pH on gramicidin S prodution by Bacillus bervis . J Chem Technol Biotechnol 31:247–257
    [Google Scholar]
  28. Virgilio A., Marcelli E., Agrimino A. 1964; Aeration-agitation studies on the rifamycin fermentation. Biotechnol Bioeng 6:271–283
    [Google Scholar]
  29. Woodruff H. B. 1966; The physiology of antibiotic production: the role of the producing organism. In Biochemical Studies of Antimicrobial Drugs (Society for General Microbiology Symposium no. 16) pp 22–46 Edited by Newton B. A., Reynolds P. E. Cambridge; Cambridge University Press:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-3-663
Loading
/content/journal/micro/10.1099/13500872-141-3-663
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error