1887

Abstract

Summary

-amylase has a signal peptide typical for proteins exported by Gram-positive bacteria. There is only one signal peptidase processing site when the protein is exported from the original host, but when it is exported by , two alternative sites are utilized. Site-directed mutagenesis was used to study the processing in Processing sites for -amylases carrying mutations in their signal peptide were determined. Processing of the signal peptide was remarkably tolerant to mutations, because switching between the alternative sites was possible. The length and the sequence of the region between the hydrophobic correspe and the cleavage site was crucial for determining the choice of the processing site. Some mutations more distal to the cleavage site also affected the site preference.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-3-649
1995-03-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/3/mic-141-3-649.html?itemId=/content/journal/micro/10.1099/13500872-141-3-649&mimeType=html&fmt=ahah

References

  1. Barkocy-Gallagher G. A., Bassford P. J. Jr. 1992; Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo . J Biol Chem 267:1231–1238
    [Google Scholar]
  2. Barthelemy I., De Buitrago G. G., Carreiro C., Roncal F., Perez-Aranda A., Marquez G., Barbero J. L. 1993; Production and secretion of human interleukin 6 into the periplasm of Eschericia coli : efficient processing of N-terminal variants of hIL6 by the E coli signal peptidase. J Biotechnol 27:307–316
    [Google Scholar]
  3. Benson S. A., Hall M. N., Rasmussen B. A. 1987; Signal sequence mutations that alter coupling of secretion and translation of an Escherichia coli outer membrane protein . J Bacteriol 169:4686–4691
    [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472
    [Google Scholar]
  5. Chou P. Y., Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol 47:45–148
    [Google Scholar]
  6. Cornelis P., Digneffe C., Willemot K. 1982; Cloning and expression of a Bacillus coagulans amylase gene in Escherichia coli . Mol & Gen Genet 186:507–511
    [Google Scholar]
  7. Dev I. K., Ray P. H, Novak P. 1990; Minimum substrate sequence for signal peptidase I of Escherichia coli . J Biol Chem 265:20069–20072
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  9. van DijI J. M., De Jong A., Smith H., Bron S., Venema G. 1991; Non-functional expression of Escherichia coli signal peptidase I in Bacillus suhtilis . J Gen Microbiol 137:2073–2083
    [Google Scholar]
  10. von Heijne G. 1985; Signal sequences The limits of variation. J Mol Biol 184:99–105
    [Google Scholar]
  11. von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690
    [Google Scholar]
  12. von Heijne G., Abrahmsen L. 1989; Species-specific variation in signal peptide design Implications for protein secretion in foreign hosts. FEBS Lett 244:439–446
    [Google Scholar]
  13. Ito K., Bassford P. J., Jr & Beckwith J. R. 1981; Protein localization in Escherichia coli: is there a common step in the secretion of periplasmic and outer-membrane proteins?. Cell 24:707–717
    [Google Scholar]
  14. Kadonaga J. T., Plückthun A., Knowles J. R. 1985; Signal sequence mutants of β-lactamase. J Biol Chem 260:16192–16199
    [Google Scholar]
  15. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492
    [Google Scholar]
  16. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  17. Nilsson I., von Heijne G. 1991; A de novo designed signal peptide cleavage casette functions in vivo . J Biol Chem 266:3408–3410
    [Google Scholar]
  18. Puziss J. W., Strobel S. M. , Bassford P. J. Jr. 1992; Export of maltose-binding protein species with altered charge distribution surrounding the signal peptide hydrophobic core in Eschericia coli cells harboring prl suppressor mutations. J Bacteriol 174:92–101
    [Google Scholar]
  19. Sakakibara Y., Tsutsumi K., Nakamura K., Yamane K. 1993; Structural requirements of Bacillus subtilis α-amylase signal peptide for efficient processing: in vivo pulse-chase experiments with mutant signal peptides. J Bacteriol 175:4203–4212
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratov Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  22. Saunders C. W., Pedroni J. A., Monahan P. M. 1991; Optimization of the signal-sequence cleavage site for secretion from Bacillus subtilis of a 34-amino acid fragment of human parathyroid hormone. Gene 102:277–282
    [Google Scholar]
  23. Shen L. M., Lee J.-I., Cheng S., Jutte H., Kuhn A., Dalbey R. E. 1991; Use of site-directed mutagenesis to define the limits of sequence variation tolerated for processing of the Ml3 procoat protein by the Escherichia coli leader peptidase. Biochemistry 30:11775–11781
    [Google Scholar]
  24. Suominen I., Karp M., Lautamo J., Knowles J., Mantsaick P. 1987a Thermostable α-amylase of Bacillus stearothermophilus: cloning, expression, and secretion by Escherichia coli . In Extracellular Enzymes of Microorganisms Chaloupka J., Krumphanzl V. pp New York: Plenum Press;129–137
    [Google Scholar]
  25. Suominen I., Karp M., Lähde M., Kopio A., Glumoff T., Meyer P., Mäntsäiä P. 1987b; Extracellular production of cloned α-amylase by Escherichia coli. Gene 33:165–176
    [Google Scholar]
  26. Suominen I., Käpylä J., Tilgmann C., Glumoff V., Mäntsäiä P. 1988; Suppression of growth defects of α-amylase secreting Escherichia coli by signal sequence fusion. FEMS Microbiol Lett 55:3–8
    [Google Scholar]
  27. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  28. Vihinen M., Mäntsäiä P. 1990; Characterization of a thermo-stable Bacillus stearothermophilus α-amylase. Biotechnol Appl Biochem:427–435
    [Google Scholar]
  29. Vihinen M., Ollikka P., Niskanen J., Meyer P., Suominen I., Karp M., Holm L., Knowles J., Mäntsäiä P. 1990; Site-directed mutagenesis of a thermostable α-amylase from Bacillus stearo-thermophilus: putative role of three conserved residues. J Biochem 107:267–272
    [Google Scholar]
  30. Watson M. E. E. 1984; Compilation of published signal sequences. Nucleic Acids Res 12:5145–5164
    [Google Scholar]
  31. Wolfe P. B., Wickner W. 1984; Bacterial leader peptidase, a membrane protein without a leader peptide, uses the same export pathway as pre-secretory proteins. Cell 36:1067–1072
    [Google Scholar]
  32. Yanisch-Perron C, Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  33. Zagursky R. J., Berman M. L., Baumeister K., Lomax N. 1985; Rapid and easy sequencing of large linear double stranded DNA and supercoiled plasmid DNA. Gene Anal Tech 2:89–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-3-649
Loading
/content/journal/micro/10.1099/13500872-141-3-649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error