Resistance of to antimicrobial hydrophobic agents is modulated by the efflux system Free

Abstract

Summary:

The transferable ) system of determines levels of gonococcal resistance to hydrophobic agents (HAs), including detergent-like fatty acids and bile salts that bathe certain mucosal surfaces. The genetic organization of the system was determined and found to consist of the gene, which encodes a transcriptional regulator (MtrR), and three tandemly linked genes termed . The genes were organized in the same apparent transcriptional unit, upstream and divergent from the gene. The -encoded proteins of were analogous to a family of bacterial efflux/transport proteins, notably the MexABOprK proteins of and the AcrAE and EnvCD proteins of , that mediate resistance to drugs, dyes, and detergents. Inactivation of the gene resulted in loss of the MtrC lipoprotein and rendered gonococci hypersusceptible to structurally diverse HAs; this revealed the importance of the system in determining HA in gonococci. Further support for a role of the gene complex in determining levels of HA in gonococci was evident when transformants bearing mutations in the gene were analysed. In this respect, missense and null mutations in the gene were found to result in increased levels of MtrC and HA. However, high levels of MtrC and HA, similar to those observed for clinical isolates, were associated with a single bp deletion in a 13 bp inverted repeat sequence that intervened the divergent and genes. We propose that the 13 bp inverted-repeat sequence represents a transcriptional control element that regulates expression of the gene complex, thereby modulating levels of gonococcal susceptibility to HA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-3-611
1995-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/3/mic-141-3-611.html?itemId=/content/journal/micro/10.1099/13500872-141-3-611&mimeType=html&fmt=ahah

References

  1. Baker R. F., Yanofsky C. 1968; The periodicity of RNA polymerase initiations: a new regulatory feature of transcription. Proc Natl Acad Sci USA 60:313–320
    [Google Scholar]
  2. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. 1984; A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem 136:175–179
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  4. Brow M. A. D., Pesin R., Sutcliffe J. G. 1985; The tetracycline repressor of pSClOl. Mol Biol Evol 2:1–12
    [Google Scholar]
  5. Chen C.-Y., Parsons C. S., Morse S. A. 1985 Membrane proteolipids of Neisseriagonorrhoeae . In The Pathogenic Neisseriae pp 360–365 Edited by Schoolnik G. K. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Clark V. L., Campbell L. A., Palermo D. A., Evans T. M., Klimpel K. W. 1987; Induction and repression of outer membrane proteins by anaerobic growth of Neisseria gonorrhoeae . Infect Immun 55:1359–1364
    [Google Scholar]
  7. Cornelissen C. N., Biswas G. D., Tsai J., Paruchuri D. K., Thompson S., Sparling P. F. 1992; Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol 174:5788–5797
    [Google Scholar]
  8. DeMarco de Hormaeche R., Mehlert A., Young D. B., de Hormaeche C. E. 1991 Antigenic homology between the 65 kDa heat shock protein of Mycobacterium tuberculosis, GroEL of E. coli and proteins of Neisseria gonorrhoeae expressed during infection. In Neisseriae 1990 pp 199–203 Edited by Achtman M. and others Berlin: Walter de Gruyter;
    [Google Scholar]
  9. Dunbar B. S., Mura H., Timmons T. 1990; Protein analysis using high-resolution two dimensional polyacrylamide gel electro-phoresis. Methods Enzymol 186:441–459
    [Google Scholar]
  10. Eisenstein B. I., Sparling P. F. 1978; Mutations to increased antibiotic sensitivity in naturally-occurring gonococci. Nature 271:242–244
    [Google Scholar]
  11. Goodman S. D., Scocca J. J. 1988; Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae . Proc Natl Acad Sci USA 85:6952–6986
    [Google Scholar]
  12. Guthmiller J. M., Kraig E., Cagle M. P., Kolodrubetz D. 1990; Sequence of the IktD gene from Actinobacillus actinomycetemcomitans . Nucleic Acids Res 59:5992
    [Google Scholar]
  13. Guymon L. F., Sparling P. F. 1975; Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive mutants of Neisseria gonorrhoeae . J Bacteriol 124:757–763
    [Google Scholar]
  14. Guymon L. F., Walstad D. L., Sparling P. F. 1978; Cell envelope alterations in antibiotic-sensitive and -resistant strains of Neisseria gonorrhoeae . J Bacteriol 136:391–401
    [Google Scholar]
  15. von Heijne G. 1989; The structure of signal peptides from bacterial lipoproteins. Protein Eng 2:531–534
    [Google Scholar]
  16. Hess J., Weis W., Vogel M., Goebel W. 1986; Nucleotide sequence of a plasmid-encoded hemolysin determinant and its comparison with a chromosomal hemolysin sequence. FEMS Microbiol Lett 34:1–11
    [Google Scholar]
  17. Hill S., Judd R. C. 1989; Identification and characterization of peptidoglycan-associated proteins in Neisseria gonorrhoeae . Infect Immun 57:3612–3618
    [Google Scholar]
  18. Innis M. A., Tokunaga M., Williams M. E., Loranger J. M., Chang S.-Y., Chang S., Wu H. C. 1984; Nucleotide sequence of the Escherichia coli pro lipoprotein signal peptidase (Isp) gene. Proc Natl Acad Sci USA 81:3708–3712
    [Google Scholar]
  19. Judd R. C., Strange J. C., Pettit R. K., Shafer W. M. 1991; Identification and characterization of a conserved outer-membrane protein of Neisseria gonorrhoeae . Mol Microbiol 5:1091–1096
    [Google Scholar]
  20. Judd R. C., Porcella S. F. 1993; Isolation of the periplasm of Neisseria gonorrhoeae . Mol Microbiol 10:567–574
    [Google Scholar]
  21. Klein J. R., Henrich B. H., Plapp R. 1991; Molecular analysis and nucleotide sequence of the envCD operon of Escherichia coli . Mol & Gen Genet 230:230–240
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  23. Lomovskaya O., Lewis K. 1992; Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci USA 89:8938–8942
    [Google Scholar]
  24. Ma D., Cook D. N., Alberti M., Pon N. G., Nikaido H., Hearst J. E. 1993; Molecular cloning and characterization of acrA and acrE genes of Escherichia coli . J Bacteriol 175:6299–6313
    [Google Scholar]
  25. McAllister C. F., Stephens D. S. 1993; Analysis in Neisseria meningitidis and other Neisseria species of genes homologous to the FKBP immunophilin family. Mol Microbiol 10:13–24
    [Google Scholar]
  26. Maness M. J., Sparling P. F. 1973; Multiple antibiotic resistance due to a single mutation in Neisseria gonorrhoeae . J Infect Dis 128:321–330
    [Google Scholar]
  27. Morse S. A., Lysko P. G., McFarland L., Knapp J. S., Sandstrom E., Critchlow C., Holmes K. K. 1982; Gonococcal strains from homosexual men have outer membranes with reduced permeability to hydrophobic molecules. Infect Immun 37:432–438
    [Google Scholar]
  28. Nies D., Nies A., Chu L., Silver S. 1989; Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus . Proc Natl Acad Sci USA 86:7351–7355
    [Google Scholar]
  29. Nikaido H. 1994; Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388
    [Google Scholar]
  30. O’Farrell P. Z., Goodman H. M., O’Farrell P. H. 1977; High-resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1142
    [Google Scholar]
  31. Pan W., Spratt B. G. 1994; Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 11:769–775
    [Google Scholar]
  32. Poole K., Heinrichs D. E., Neshat S. 1993a; Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa : regulation by iron and possible involvement in the secretion of siderophore pyoverdine. Mol Microbiol 10:529–544
    [Google Scholar]
  33. Poole K., Krebes K., McNally C., Neshat S. 1993b; Multiple antibiotic resistance in Pseudomonas aeruginosa : evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372
    [Google Scholar]
  34. Saier M. H. Jr, Tam R., Reizer A., Reizer J. 1994; Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sarubbi F. A., Sparling P. F., Blackman E., Lewis E. 1975; Loss of low-level antibiotic resistance in Neisseria gonorrhoeae due to env mutations. J Bacteriol 124:750–756
    [Google Scholar]
  37. Shafer W. M., Guymon L. F., Lind I., Sparling P. F. 1984; Identification of an envelope mutation (env-10) resulting in increased antibiotic susceptibility and pyocin resistance in a clinical isolate of Neisseria gonorrhoeae . Antimicrob Agents Chemother 25:767–769
    [Google Scholar]
  38. Sparling P. F., Sarubbi F. A., Blackman E. 1975; Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae . J Bacteriol 124:740–749
    [Google Scholar]
  39. Sparling P. F., Sox T. E., Mohammed W., Guymon L. F. 1978 Antibiotic resistance in the gonococcus: diverse mechanisms of coping with a hostile environment. In Immunobiology of Neisseria gonorrhoeae pp 44–52 Edited by Brooks G. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Starkova Z., Thomas P., Starka J. 1978; Morphological mutants of Escherichia coli: nature of the permeability in mon and envC cells. Ann Microbiol Inst Pasteur 129:265–284
    [Google Scholar]
  41. Stoker N. G., Fairweather N. F., Spratt B. G. 1982; Versatile low-copy-number plasmid vectors for cloning in Escherichia coli . Gene 18:335–341
    [Google Scholar]
  42. Swanson J., Mayer L. W., Tam M. R. 1982; Antigenicity of Neisseria gonorrhoeae outer membrane protein(s) III detected by immunoprecipitation and Western blot transfer with a monoclonal antibody. Infect Immun 38:668–672
    [Google Scholar]
  43. Swartzman E., Silverman M., Meighen E. A. 1992; The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter. J Bacteriol 17:7490–7493
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-3-611
Loading
/content/journal/micro/10.1099/13500872-141-3-611
Loading

Data & Media loading...

Most cited Most Cited RSS feed