1887

Abstract

Summary: Two transposon Tn5-induced mutants of wild-type broad-host-range sp. GRH2 were isolated and found to harbour different alterations in surface polysaccharides. These mutants, designated GRH2-14 and GRH2-50, induced a few, empty nodules on and lost the ability to nodulate most host herbaceous legumes. Whereas mutant GRH2-14 produces an acidic exopolysaccharide (EPS) similar to the wild-type, the acidic EPS of mutant GRH2-50 lacks galactose and the pyruvyl and 3-hydroxybutyryl substituents attached to this sugar moiety. In addition, both mutants GRH2-50 and GRH2-14 were altered in smooth lipopolysaccharides (LPS). DNA sequence analyses of the correspresponding Tn insertions revealed that strain GRH2-50 was mutated in a DNA locus homologous to , and enzyme assays indicated that the UDPglucose 4-epimerase (GalE) activity was missing in this mutant strain. DNA hybridization studies showed that the GRH2-50 mutant DNA has homologous sequences within the different biovars of . However, no DNA homology to GRH2-14 altered DNA was found in those rhizobial strains, indicating that it represents a new chromosomal locus in sp. ( ) involved in symbiotic development.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-3-573
1995-03-01
2022-01-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/3/mic-141-3-573.html?itemId=/content/journal/micro/10.1099/13500872-141-3-573&mimeType=html&fmt=ahah

References

  1. Abe M., Sherwood J. E. , Hollingsworth R. I. , Dazzo F. B. . 1984; Stimulation of clover root hair infection by lectin-binding oligosaccharides from the capsular and extracellular polysaccharides of Rhizobium trifolii . J Bacteriol 160:517–520
    [Google Scholar]
  2. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum . J Gen Microbiol 84:188–198
    [Google Scholar]
  3. Canter Cremers H. C. J., Batley M. , Redmond J. W. , Eydems L. , Breedveld M. W. , Zevenhuizen L. P. T. M , Pees E. , Wijffelman C. A. , Lugtenberg B. J. J. . 1990; Rhizobium leguminosarum exoB mutants are deficient in the synthesis of UDP-glucose 4′-epimerase . J Biol Chem 265:21122–21127
    [Google Scholar]
  4. Carlson R. W. 1982; Nitrogen fixation. Rhizobium. In Surface Chemistry 2 pp 199–234 Edited by Broughton W. J. . Oxford; Oxford University Press:
    [Google Scholar]
  5. Cassé F., Boucher C. , Julliot J. S. , Michel M. , Denarié J. . 1979; Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis . J Bacteriol 113:229–242
    [Google Scholar]
  6. Dazzo F. B., Petersen M. . 1989; Applications of computer- assisted image analysis for microscopic studies of the Rhizobium- legume symbiosis . Symbiosis 7:193–210
    [Google Scholar]
  7. Dazzo F. B., Truchet G. L., Hollingsworth R. I. , Hrabak E. M., Pankratz H. S., Philip-Hollingsworth S., Salzwedel J. L., Chapman K., Squartini A., Appenzeller L., Gerhold D., Orgambide G. 1992; Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs . J Bacteriol 173:5371–5384
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  9. Emerich D. W., Ruiz-ArgUeso T., Russell S. A., Evans H. J. 1980; Investigation of the H2 oxidation system in Rhizobium japonicum 122DES nodule bacteroids . Plant Physiol 66:1061–1066
    [Google Scholar]
  10. Fukasawa T., Obonai K., Segawa T., Nogi Y. 1980; The enzymes of the galactose cluster in Saccharomyces cerevisiae . J Biol Chem 255:2705–2707
    [Google Scholar]
  11. Garfinkel D. J., Nester E. W. 1980; Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743
    [Google Scholar]
  12. Herrera M. A., Bedmar E. J., Olivares J. 1985; Host specificity of Rhizobium strains isolated from nitrogen-fixing trees and nitrogenase activities of strain GRH2 in symbiosis with Prosopis chilensis . Plant Science 42:177–182
    [Google Scholar]
  13. Hitchcock P. J., Brown T. M. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver- stained polyacrylamide gels . J Bacteriol 154:269–277
    [Google Scholar]
  14. Hollingsworth R. I., Dazzo F. B., Hallenga K., Musselman B. 1988; The complete structure of the Trifoliin A lectin-binding capsular polysaccharide of Rhizobium trifolii 843. Carbohydr Res 172:97–112
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  16. Lamb J. W., Hombrecher G. , Johnston A. W. B. 1982; Plasmid- determined nodulation and nitrogen fixation abilities in Rhizobium phaseoli . Mol & Gen Genet 186:444–452
    [Google Scholar]
  17. López-Lara M. I., Orgambide G., Dazzo F. B., Olivares J., Toro N. 1993; Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from Acacia nodules. J Bacteriol 175:2826–2832
    [Google Scholar]
  18. Maier R. J., Brill W. J. 1978; Involvement of Rhizobium japonicum O antigen in soybean nodulation . J Bacteriol 133:1295–1299
    [Google Scholar]
  19. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. MUller P., Hynes M., Kapp D., Niehaus K., Pühler A. 1988; Two classes of Rhizobium meliloti infection mutants differ in exopolysaccharide production and in coinoculation properties with nodulation mutants . Mol &Gen Genet 211:17–26
    [Google Scholar]
  21. Noel K. D., Vandenbosch K. A., Kulpaca B. 1986; Mutations in Rhiyobium phaseoli that lead to arrested development of infection threads . J Bacteriol 168:1392–1401
    [Google Scholar]
  22. Olivares J., Casadesus J., Bedmar E. J. 1980; Methods for testing degree of infectivity of Rhizobium meliloti strains . Appl Environ Microbiol 39:967
    [Google Scholar]
  23. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequences comparison. Proc Natl Acad Sci USA 85:2444–2448
    [Google Scholar]
  24. Priefer U. B. 1989; Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhhobium leguminosarum biovar viciae VF39 . f Bacteriol 171:6161–6168
    [Google Scholar]
  25. Reuber T. L., Reed J. W., Glazebrook J., Glucksmann A. M., Ahman D., Marra A., Walker G. C. 1991; Rhizobium meliloti exopolysaccharides: genetic analysis and symbiotic importance . Biochem Soc Trans 19:636–641
    [Google Scholar]
  26. Rigaud J., Puppo A. 1975; Indole-3-acetic acid catabolism by soybean bacteroids. J Gen Microbiol 88:223–228
    [Google Scholar]
  27. Robertsen B. K., Aiman P., Darvill A. G., McNeil M., Albers- heim P. 1981; The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii . Plant Physiol 67:389–340
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  29. Toro N., Herrera M. A., Olivares J. 1984; Location of nif genes on large plasmids in Rhizobium strains isolated from legume tree root nodules . FEMS Microbiol Lett 24:113–115
    [Google Scholar]
  30. Zhan Y., Hollingsworth R. I., Priefer U. 1992; Characterization of structural defects in the lipopolysaccharides of symbiotically impaired Rhizobium leguminosarum by viciae VF-39 mutants . Carbohydr Res 231:261–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-3-573
Loading
/content/journal/micro/10.1099/13500872-141-3-573
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error