1887

Abstract

SUMMARY:

Screening GenBank indicated that an esterase from had high sequence similarity with bacterial non-haem haloperoxides. However, this homology was limited to two distinct domains of the published esterase sequence. As errors in the published sequence were suspected, the esterase gene was sequenced again. The revised sequence displayed between 40 and 50% identical amino acids with the haloperoxidases, but distributed along the whole sequence. In addition to the structural homologies with haloperoxidases, the esterase also displayed functional homology. The recombinant esterase, purified from cells, was capable of both ester hydrolysis and halogenation, as detected by the formation of bromophenol blue or spectrophotometrically by the bromination of monochlorodimedon. The esterase is thus a bifunctional enzyme. The sequence analysis and the biochemical investigations show that the esterase belongs to the haloperoxidase family. It also possessed, however, a typical feature of serine-hydrolases, namely the consensus motif Gly-X-Ser-X-Gly around the active serine of the catalytic triad. By alignment of the esterase with different serine-hydrolase sequences, it was possible to identify the other two residues of the triad. The triad comprised the residues Ser95, Asp223 and His252. Interestingly, a structurally equivalent catalytic triad was also identified in the sequences of all bacterial non-haem haloperoxidases, in highly conserved domains. The presence of a catalytic triad in haloperoxidases is expected to be important in the mechanism of halogenation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-459
1995-02-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-459.html?itemId=/content/journal/micro/10.1099/13500872-141-2-459&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Bantleon R., Altenbuchner J., van Pée, K.-H. 1994; Chloroperoxidase from Streptomyces lividans: isolation and characterisation of the enzyme and the corresponding gene. J Bacteriol 176:2339–2347
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:255–260
    [Google Scholar]
  4. Brady L., Brzozowski A., Derewenda Z. S., Dodson E., Dodson G., Tolley S., Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L., Thim L., Menge U. 1990; A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature 343:767–770
    [Google Scholar]
  5. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organisation and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127
    [Google Scholar]
  6. Choi K. D., Jeohn G. H., Rhee J. S., Yoo O. J. 1990; Cloning and nucleotide sequence of an esterase gene from Pseudomonas fluorescens and expression of the gene in Escherichia coli. . Agric Biol Chem 54:2039–2045
    [Google Scholar]
  7. Chung C. T., Niemela S. L., Miller R. H. 1989; One step preparation of competent E. coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86:2172–2175
    [Google Scholar]
  8. Dawson J. H., Sono M. 1987; Cytochrome P-450 and chloroperoxidase: thiolate ligated heme enzymes. Spectroscopic determination of their active site structures and mechanistic implications of thiolate ligation. Chem Rev 87:1255–1276
    [Google Scholar]
  9. De Boer E., Wever R. 1988; The reaction mechanism of the novel vanadium bromoperoxidase. J Biol Chem 263:12326–12332
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  11. Donnelly P. K., Crawford D. L. 1988; Production by Streptomyces viridosporus T7A of an enzyme which cleaves aromatic acids from lignocellulose. Appl Environ Microbiol 54:2237–2244
    [Google Scholar]
  12. Franken S. M., Rozeboom H. J., Klak K. H., Dijkstra B. W. 1991; Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J 10:1297–1302
    [Google Scholar]
  13. Frantz B., Ngai K. L., Chatterjee D. K., Ornston L. N., Chakrabarty A. M. 1987; Nucleotide sequence and expression of clcD, a plasmid-borne dienelactone hydrolase gene from Pseudomonas sp. strain B13.. J Bacteriol 169:704–709
    [Google Scholar]
  14. Gold A. M., Fahrney D. 1964; Sulfonyl fluorides as inhibitors of esterases. Formation and reactions of phenylmethanesulfonyl α-chymotrypsin. Biochemistry 6:783–791
    [Google Scholar]
  15. Gribskov M., Devereaux J., Burges J. 1984; The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Res 12:539–547
    [Google Scholar]
  16. Haag T., Lingens F., van Pée K.-H. 1991; A metal ion and cofactor-independent enzymatic redox reaction: halogenation by bacterial non-heme haloperoxidases. Agnew Chem ĩnt Ed Engl 30:1487–1488
    [Google Scholar]
  17. Hewson W. D., Hager L. P. 1980; Bromoperoxidase and halogenated lipids in marine algae. J. Phycol 16:340–345
    [Google Scholar]
  18. Janssen D. B., Pries F., van der Ploeg J., Kazemier B., Terpstra P., Witholt B. 1989; Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J Bacteriol 171:6791–6799
    [Google Scholar]
  19. Kieser T. 1984; Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli . Plasmid 12:19–36
    [Google Scholar]
  20. Kim K. K., Hwang K. Y., Choi K. D., Kang J. H., Yoo O. J., Suh S. W. 1993; Crystallisation and preliminary X-ray crystallographic analysis of aryl esterase from Pseudomonas fluorescens . Proteins Struct Funct Genet 15:213–215
    [Google Scholar]
  21. Kraut J. 1977; Serine ptoteases: structure and mechanisms of catalysis. Annu Rev Biochem 46:331–358
    [Google Scholar]
  22. Kugimiya W., Otani Y., Hashimoto Y., Takagi Y. 1986; Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi . Biochem Biophys Commun 141:185–190
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. LaVallie E. R., DiBlasio E. A., Kovacic S., Grant K. L., Schendel P. F., McCoy J. M. 1993; A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology 11:187–193
    [Google Scholar]
  25. Loo T. L., Burger J. W., Adamson R. H. 1964; Bromination of phtalein dyes by the uterus of the dogfish, Squalus acanthias . Proc Soc Exp Biol Med 114:60–63
    [Google Scholar]
  26. Manthey J. A., Hager L. P. 1989; Characterisation of the catalytic properties of bromoperoxidase. Biochemistry 28:3052–3057
    [Google Scholar]
  27. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J., Sussman J. L., Verschueren K. H. G., Goldman A. 1992; The α/β hydrolase fold. Protein Eng 5:197–211
    [Google Scholar]
  28. Parker R. C., Seed B. 1980; Two dimensional agarose gel electrophoresis: ‘ Sea Plaque ’ agarose dimension. Methods Enzymol 65:358–363
    [Google Scholar]
  29. Pathak D., Ollis D. 1990; Refined structure of dienelactone hydrolase at 1·8 Å. J Mol Biol 214:497–525
    [Google Scholar]
  30. Pelletier I., Pfeifer O., Altenbuchner J., van Pée K.-H. 1994; Cloning of a second non-heam bromoperoxidase gene from Streptomyces aureofaciens ATCC 10762: sequence analysis, expression in Streptomyces lividans and enzyme purification. Microbiology 140:509–516
    [Google Scholar]
  31. Pfeifer O., Pelletier I., Altenbuchner J., van Pée K.-H. 1992; Molecular cloning and sequencing of a non-haem bromoperoxidase gene from Streptomyces aureofaciens ATCC 10762. J Gen Microbiol 138:1123–1131
    [Google Scholar]
  32. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353
    [Google Scholar]
  33. Rosenberg M., Roegner V., Becker F. F. 1975; The quantitation of rat serum esterases by densitometry of acrylamide gels stained for enzyme activity. Anal Biochem 66:206–212
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Schrag J. D., Li Y., Wu S., Cygler M. 1991; Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum . Nature 351:761–764
    [Google Scholar]
  36. Verschueren K. H. G., Seljée F., Rozeboom H. J., Klak K. H., Dijkstra B. W. 1993; Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363:693–698
    [Google Scholar]
  37. Wada K., Wada Y., Ishibashi F., Gojobori T., Ikemura T. 1992; Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res 20:2111–2118
    [Google Scholar]
  38. Weng M., Pfeifer O., Krauss S., Lingens F., van Pée K.-H. 1991; Purification, characterization and comparison of two non-haem bromoperoxidases from Streptomyces aureofaciens ATCC 10762. J Gen Microbiol 137:2539–2546
    [Google Scholar]
  39. Wolfframm G., Lingens F., Mutzel R., van Pée K.-H. 1993; Chloroperoxidase-encoding gene from Pseudomonas pyrrocinia: sequence, expression in heterologous hosts and purification of the enzyme. Gene 130:131–135
    [Google Scholar]
  40. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-459
Loading
/content/journal/micro/10.1099/13500872-141-2-459
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error