1887

Abstract

SUMMARY: The genes, which encode the four subunits , , and α of the [Ni-Fe] hydrogenase from the archaeon , have been isolated and sequenced using a PCR/IPCR-based strategy. From the sequence analysis it appears that the four structural genes are tightly linked and organized in a single transcription unit. The and gene products are related to the small and the large subunits of several archaeal and eubacterial [Ni-Fe] hydrogenases with an overall degree of sequence relatedness ranging from 35% to 50% (identity + similarity). In particular, the amino acid sequence motifs involved in the accommodation of nickel and iron-sulfur clusters are conserved. In addition, the database search revealed that the and gene products are homologous to the - and -encoded subunits of the sulfite reductase enzyme from . This is particularly interesting in view of the recent finding that the hydrogenase appears to be a bifunctional enzyme endowed with both proton- and sulfur- reducing activities.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-449
1995-02-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-449.html?itemId=/content/journal/micro/10.1099/13500872-141-2-449&mimeType=html&fmt=ahah

References

  1. Adams M. W. W., Mortenson L. E. 1984; The purification of hydrogenase II (uptake hydrogenase) from the anaerobic N2-fixing bacterium Clostridium pasteurianum. . Biochim Biophys Acta 766:51–61
    [Google Scholar]
  2. Alex L A., Reeve J. N., Orme-Johnson W. H., Walsh C. T. 1990; Cloning, sequence determination and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5- deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum ΔH.. Biochemistry 29:7237–7244
    [Google Scholar]
  3. Böhm R, Sauter M, Böck A. 1990; Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components.. Mol Microbiol 4:231–243
    [Google Scholar]
  4. Bokranz M, Bäumner G, Allmansberger R, Ankel-Fuchs D, Klein A. 1988; Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum. . J Bacteriol 170:568–577
    [Google Scholar]
  5. Bradford M. M. 1976; .A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Anal Biochem 72:248–254
    [Google Scholar]
  6. Brown J. W., Daniels C. J, Reeve J. N. 1989; Gene structure, organization and expression in archaebacteria.. CRC Crit Rev Microbiol 16:287–338
    [Google Scholar]
  7. Bryant F. O., Adams M. W. W. 1989; Characterization of hydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. . J Biol Chem 264:5070–5079
    [Google Scholar]
  8. Dower W. J., Miller J. F, Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation . BioNucleic Acids Res 16:6127–6145
    [Google Scholar]
  9. Fiala G, Stetter K. O. 1986; Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C . Arch Microbiol 145:56–61
    [Google Scholar]
  10. Hain J, Reiter W.-D, Hüdephol U, Zillig W. 1992; Elements of an archaeal promoter defined by mutational analysis. . Nucleic Acids Res 20:5423–5428
    [Google Scholar]
  11. Halboth S, Klein A. 1992; Methanococcus voltae harbors four gene clusters potentially encoding two [Ni-Fe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F 420 -non- reducing types. . Mol & Gen Genet 233:217–224
    [Google Scholar]
  12. Hausner W, Frey G, Thomm M. 1991; Control regions of an archaeal gene. A TATA box and an initiator element promote cell- free transcription of the tRNA val gene of Methanococcus vannielii. . J Mol Biol 222:495–508
    [Google Scholar]
  13. Huang C. J, Barrett E. L. 1991; Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite . J Bacteriol 173:1544–1553
    [Google Scholar]
  14. Huber R, Kristjansson J. K., Stetter K.O. 1987; Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C.. Arch Microbiol 149:95–101
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  16. LeGendre N, Matsudaira P. 1990; Gel electrophoresis. In A Practical Guide to Protein and Peptide Purification for Microsequencing pp 52–69 Edited by Matsudaira P. San Diego: Academic Press;
    [Google Scholar]
  17. Ma K, Schicho R. N., Kelly R. N., Adams M. W. W. 1993; Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase : evidence for a sulfur-reducing hydrogenase ancestor. . Proc Natl Acad Sci USA 90:5341–5344
    [Google Scholar]
  18. Matsudaira P. 1987; Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes.. J Biol Chem 262:10035–10038
    [Google Scholar]
  19. Meyer J, Gagnon J. 1991; Primary structure of hydrogenase I from Clostridium pasteurianum. . Biochemistry 30:9697–9704
    [Google Scholar]
  20. Mura G. M., Pedroni P, Branduzzi P, Grandi G, Park J.-B., Adams M. W. W., Galli G. 1991; Characterization of Pyrococcus furiosus hydrogenase. . Proceedings of the 15th International Congress of Biochemistry, Jerusalem, p. 313:
    [Google Scholar]
  21. Ochman H, Medhora M. M., Garza D, Haiti D. L. 1990; Amplification of flanking sequences by inverse PCR.. In PCR Protocols: a Guide to Methods and Applications pp Edited by 219–227 San Diego: Academic Press.: M. A. Innis; D. H. Gelfand; J. J. Sninsky; T. J. White;
    [Google Scholar]
  22. Przybyla A. E., Robbins J, Menon N, Peck H. D. 1992; Structure-function relationship among the nickel-containing hydro- genases.. FEMS Microbiol Rev 88:109–136
    [Google Scholar]
  23. Reeve J. N., Beckler G. S. 1990; Conservation of primary structure in prokaryotic hydrogenases.. FEMS Microbiol Rev 87:419–424
    [Google Scholar]
  24. Reeve J. N., Beckler G. S., Cram D. S., Hamilton P. T., Brown J. W., Krzycki J. A, Kolodziej A. F, Alex L, Orme-Johnson W. H, Walsh C. T. 1989; A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain ∆H encodes a polyferredoxin. . Proc Natl Acad Sci USA 86:3031–3035
    [Google Scholar]
  25. Sambrook J, Fritsch E. F, Maniatis T. 1989; Molecular Cloning: a L·aboratory Manual, 2nd edn. . Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. 87:419–424
    [Google Scholar]
  26. Sanger F, Nicklen S, Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  27. Schicho R. N., Ma K, Adams M. W. W, Kelly R. M. 1993; Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus.. J Bacteriol 175:1823–1830
    [Google Scholar]
  28. Schuler G. D, Altschul S. F, Lipman D. J. 1991; A workbench for multiple alignment construction and analysis.. Proteins 9:180–190
    [Google Scholar]
  29. Setzke E, Hedderich R, Heiden S, Thauer R. K. 1994; H 2 : heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum. Composition and properties. . Eur J Biochem 220:139–148
    [Google Scholar]
  30. Smith E. T, Blamey J. M., Hutchins A, Ramakrishnan V, Zhou Z.-H, Adams 1994. 1990; Structure and function of novel hydrogenases from microorganisms growing near and above 100 °C.. Proceedings of the Fourth International Conference on the Molecular Biology of Hydrogenases, pp 3–4 Edited by The Netherlands: Noordwijkerhout;
    [Google Scholar]
  31. Stetter K. O. 1986; Diversity of extremely thermophilic archae- bacteria. In Thermophiles: General, Molecular and Applied Microbiology, pp. 39–74 Edited by T. D. Brock. New York: John Wiley & Sons;
    [Google Scholar]
  32. Stetter K. O., König H, Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. . Syst Appl Microbiol 4: 535–551
    [Google Scholar]
  33. Stokkermansy J., van Dongen W., Kaan A., van den Berg W., 8ı Veeger C. 1989; hydy, a gene from Desulfovibrio vulgaris (Hildenborough) encodes a polypeptide homologous to the peri- plasmic hydrogenase.. FEMS Microbiol Lett 58:217–222
    [Google Scholar]
  34. Tiboni O., Cammarano P., Sanangelatoni A. M. 1993; Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences . J Bacteriol 175:2961–2969
    [Google Scholar]
  35. Tran-Betcke A., Warnecke U., Bocker G, Zaborosch C., Friedrich B. 1990; Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus HI6. . J Bacteriol 172:2920–2929
    [Google Scholar]
  36. Uemori T., Ishino Y., Toh H., Asada K. , Kato I. 1993; Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res 21:259–265
    [Google Scholar]
  37. Volbeda A., Piras G., Charon M. H., Hatchikian E. G, Frey M., Fontecilla-Camps J. C. 1994; X-ray structure determination of the nickel containing hydrogenase from Desulfovibrio gigas . Proceedings of the Fourth International Conference on the Molecular Biology of Hydrogenases, The Netherlands: Noordwijkerhout; pp. 146–147
    [Google Scholar]
  38. Voordouw G., Brenner S. 1985; Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough) . Eur J Biochem 148:515–520
    [Google Scholar]
  39. Wu L.-F., Mandrand L.-F. 1993; Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev 104:243–270
    [Google Scholar]
  40. Zwickl P., Fabry S., Bogedain G, Haas A., Hensel R. 1990; Glyceraldehyde-3-phosphate dehydrogenase from the hyper-thermophilic archaebacterium Pyrococcus ivoesei : characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli . J Bacteriol 172:4329–4338
    [Google Scholar]
/content/journal/micro/10.1099/13500872-141-2-449
Loading
/content/journal/micro/10.1099/13500872-141-2-449
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error