1887

Abstract

SUMMARY: The effect of glucose on a number of mitochondrial and cytoplasmic enzymes involved in carbon metabolism (L-lactate:ferricytochrome-c 2-oxidoreductase, malate dehydrogenase, -galactosidase, invertase, maltase and NAD-glutamate dehydrogenase) has been analysed in two different strains of (PM4-4B and JA6 strains). All the above mentioned enzymes were catabolite-repressible in a strain-dependent way. From this study differences in the regulation of some enzymes have been observed between and To identify genes involved in glucose metabolism that may also control carbon catabolite repression, 2-deoxyglucose-resistant mutants (Dgr ) of that were unable to grow on glucose in the presence of antimycin A (Rag ) were selected. In this way we identified four classes of mutants. Two of them define genes previously identified: and , encoding the low affinity glucose transport system and hexokinase, respectively. The two remaining classes of mutants define two new genes, and , that control the level of hexokinase, indicating that in this enzyme is positively regulated by at least two genes. All the mutants devoid of hexokinase showed relief from carbon catabolite repression of several enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-441
1995-02-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-441.html?itemId=/content/journal/micro/10.1099/13500872-141-2-441&mimeType=html&fmt=ahah

References

  1. Breunig K. D. 1989; Glucose repression of LAC gene expression in yeast is mediated by the transcriptional activator LAC9. Mol & Gen Genet 216:422–427
    [Google Scholar]
  2. Breunig K. D., Kuger P. 1987; Functional homology between the yeast regulatory proteins GAL4 and LAC9: LAC9 -mediated transcriptional activation in Kluyveromyces lactis involves protein binding to a regulatory sequence homologous to the GAL4 proteinbinding site . Mol Cell Biol 7:4400–4406
    [Google Scholar]
  3. Carlson M., Botstein D. 1982; Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154
    [Google Scholar]
  4. Celenza J. L., Carlson M. 1984; Cloning and genetic mapping of SNF1, a gene required for expression of glucose repressible genes in Saccharomyces cerevisiae . Mol Cell Biol 4:49–53
    [Google Scholar]
  5. Clifton D., Weinstock S. B., Fraenkel D. G. 1978; Glycolysis mutants in Saccharomyces cerevisiae . Genetics 88:1–11
    [Google Scholar]
  6. Cohn M., Monod J. 1951; Purification et proprieté de la β-galactosidase d’ Escherichia coli . Biochim Biophys Acta 7:153–165
    [Google Scholar]
  7. De Deken R. H. 1966a; The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156
    [Google Scholar]
  8. De Deken R. H. 1966b; The Crabtree effect and its relation to the petite mutation. J Gen Microbiol 44:157–165
    [Google Scholar]
  9. Dickson R. C., Markin J. S. 1980; Physiological studies of β-galactosidase induction in Kluyveromyces lactis . J Bacteriol 142:777–785
    [Google Scholar]
  10. Entian K. D., Fröhlich K. U. 1984; Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. J Bacteriol 158:29–35
    [Google Scholar]
  11. Ferrero I., Rossi C., Landini M. P., Puglisi P. P. 1978; Role of the mitochondrial protein synthesis in the catabolite repression of the petite-negative yeast Kluyveromyces lactis . Biochem Biophys Res Commun 80:340–348
    [Google Scholar]
  12. Flick J. S., Johnston M. 1991; GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats . Mol Cell Biol 11:5101–5112
    [Google Scholar]
  13. Gancedo J. M. 1992; Carbon catabolite repression in yeast. Eur J Biochem 206:297–313
    [Google Scholar]
  14. Gancedo J. M., Gancedo C. 1986; Catabolite repression mutants of yeast. FEMS Microbiol Rev 32:179–187
    [Google Scholar]
  15. Goffrini P., Algeri A. A., Donnini C., Wésolowski-Louvel M., Ferrero I. 1989; RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory functions for the growth on sugars. Yeast 5:99–106
    [Google Scholar]
  16. Goffrini P., Wésolowski-Louvel M., Ferrero I., Fukuhara H. 1990; RAG1 gene of the yeast Kluyveromyces lactis codes for a sugar transporter. Nucleic Acids Res 18:5294
    [Google Scholar]
  17. Goffrini P., Wésolowski-Louvel M., Ferrero I. 1991; A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis . Mol & Gen Genet 228:401–409
    [Google Scholar]
  18. Goldstein A., Lampen J. O. 1975; β-D-Fructofuranoside fructohydrolase from yeast. Methods Ennymol 42:504–511
    [Google Scholar]
  19. Gorts C. P. M. 1967; Effect of different carbon sources on the regulation of carbohydrate metabolism in Saccharomyces cerevisiae . Antonie Leeuwenhoek 33:451–456
    [Google Scholar]
  20. Grisolia S., Quisado C. L., Fernandez M. 1964; Glutamate dehydrogenase from yeast and from animal tissues. Biochim Biophys Acta 81:61–70
    [Google Scholar]
  21. Heinisch J., Kirchrath L., Liesen T., Vogelsang K., Hollenberg C. P. 1993; Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis . Mol Microbiol 8:559–570
    [Google Scholar]
  22. Lodi T., O’Connor D., Goffrini P., Ferrero I. 1994; Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KIDLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Mol & Gen Genet 244:622–629
    [Google Scholar]
  23. Ma H., Botstein D. 1986; Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol Cell Biol 6:4046–4052
    [Google Scholar]
  24. Magasanik B. 1961; Catabolite repression. Cold Spring Harbor Symp Quant Biol 26:249–256
    [Google Scholar]
  25. Polakis E. S., Bartley W. 1965; Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J 97:284–297
    [Google Scholar]
  26. Polakis E. S., Bartley W., Meek G. A. 1965; Changes in the activities of respiratory enzymes during the aerobic growth on different carbon sources. Biochem J 97:298–304
    [Google Scholar]
  27. Prior C., Mamessiere P., Fukuhara H., Chen X. J., Wésolowski-Louvel M. 1993; The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis . Mol Cell Biol 13:3882–3889
    [Google Scholar]
  28. Salmeron J. M., Johnston S. A. 1986; Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae GAL4 gene . Nucleic Acids Res 14:7767–7780
    [Google Scholar]
  29. Slonimski P. P. 1953 Formation des enzymes respiratoires chez la levure Paris: Masson et Cie Editeurs;
    [Google Scholar]
  30. Vallier L. G., Carlson M. 1991; New SNF genes, GAL11 and GRR1 affect SUC2 expression in Saccharomyces cerevisiae . Genetics 129:675–684
    [Google Scholar]
  31. Vanoni M., Sollitti P., Goldenthal M., Marmur J. 1989; Structure and regulation of the multigene family controlling maltose fermentation in budding yeast. Prog Nucleic Acid Res Mol Biol 37:281–322
    [Google Scholar]
  32. Walsh R. B., Clifton D., Horak J., Fraenkel D. G. 1991; Saccharomyces cerevisiae null mutants in glucose phosphorylation: metabolism and invertase expression. Genetics 128:521–527
    [Google Scholar]
  33. Wésolowski M., Algeri A. A., Goffrini P., Fukuhara H. 1982; Killer DNA plasmids of the yeast Kluyveromyces lactis. I. Mutations affecting the killer phenotype. Curr Genet 5:191–197
    [Google Scholar]
  34. Wésolowski-Louvel M., Goffrini P., Ferrero I. 1988; The RAG2 gene of the yeast Kluyveromyces lactis codes for a putative phosphoglucose isomerase. Nucleic Acids Res 16:8714
    [Google Scholar]
  35. Wésolowski-Louvel M., Goffrini P., Ferrero I., Fukuhara I. 1992a; Glucose transport in the yeast Kluyveromyces lactis. 1. Properties of an inducible low-affinity glucose transporter gene. Mol Gen Genet 233:89–96
    [Google Scholar]
  36. Wésolowski-Louvel M., Prior C., Bornecque D., Fukuhara H. 1992b; Rag mutations involved in glucose metabolism in yeast: isolation and genetic characterization. Yeast 8:711–719
    [Google Scholar]
  37. Wray L. V. Jr, Witte M. M., Dickson R. C., Riley M. I. 1987; Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: structural and functional relationship to GAL4 of Saccharomyces cerevisiae . Mol Cell Biol 7:1111–1121
    [Google Scholar]
  38. Zachariae W., Kuger P., Breunig K. D. 1993; Glucose repression of lactose/galactose metabolism in Kluyveromyces lactis is determined by the concentration of the transcriptional activator LAC9 . Nucleic Acids Res 21:69–77
    [Google Scholar]
  39. Zimmermann F. K., Scheel I. 1977; Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression . Mol & Gen Genet 154:75–82
    [Google Scholar]
  40. Zimmermann F. K., Kaufmann I., Rosenberger H., Hausmann P. 1977; Genetics of carbon catabolite repression in Saccharomyces cerevisiae:genes involved in the derepression process. Mol & Gen Genet 151:95–103
    [Google Scholar]
/content/journal/micro/10.1099/13500872-141-2-441
Loading
/content/journal/micro/10.1099/13500872-141-2-441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error