1887

Abstract

SUMMARY:

bmutants defective in the structural gene lack phosphoglucose isomerase and hence cannot grow on glucose. Spontaneous mutants were isolated by selecting for the regained ability to grow on YEPD (yeast extract/peptone/glucose). Three complementation groups called (uppressor of ) were identified. The metabolism of [2-C] glucose was studied by C NMR spectroscopy. This led to the conclusion that in a mutant suppression of the glycolytic defect was achieved by increased carbon flux through the hexose monophosphate pathway. The specific activities of enzymes of the hexose monophosphate pathway (except glucose-6-phosphate dehydrogenase) and NAD- and NADP-dependent glutamate dehydrogenase were increased in the bypass mutant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-385
1995-02-01
2021-04-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-385.html?itemId=/content/journal/micro/10.1099/13500872-141-2-385&mimeType=html&fmt=ahah

References

  1. Aguilera, A. . 1986; Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae. Mol & Gen Genet 204:310–316
    [Google Scholar]
  2. Aguilera A. 1987; Mutations suppressing the effects of a deletion of the phosphoglucose isomerase gene PGI1 in Saccharomyces cerevisiae . Curr Genet 11:429–434
    [Google Scholar]
  3. Benevolensky S. V., Clifton D., Fraenkel D. G. 1994; The effect of increased phosphoglucose isomerase on glucose metabolism in Saccharomyces cerevisiae. J Biol Chem 269:4878–4882
    [Google Scholar]
  4. Boles E., Lehnert W., Zimmermann F. K. 1993; The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant . Pur J Biochem 217:469–477
    [Google Scholar]
  5. Breitenbach-Schmitt I., Schmitt H. D., Heinisch F., Zimmermann F. K. 1984; Genetic and physiological evidence for the existence of a second glycolytic pathway in yeast parallel to the phosphofructokinase-aldolase reaction sequence. Mol & Gen Genet 195:536–540
    [Google Scholar]
  6. Bruinenberg P. M., Waslander G. W., van Dijken J. P., Scheffers W. A. 1986; A comparative radiorespirometric study of glucose metabolism in yeasts. Yeast 2:117–121
    [Google Scholar]
  7. Ciriacy M., Breitenbach I. 1979; Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J Bacteriol 139:152–160
    [Google Scholar]
  8. Clifton D., Weinstock S. B., Fraenkel D. G. 1978; Glycolysis mutants in Saccharomyces cerevisiae. Genetics 88:1–11
    [Google Scholar]
  9. Davies S. E. C., Brindle K. M. 1992; Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry 31:4729–4735
    [Google Scholar]
  10. Dickinson J. R. 1991; Biochemical and genetic studies on the function of, and relationship between the PGI1- and CDC30- encoded phosphoglucose isomerases in Saccharomyces cerevisiae . J Gen Microbiol 137:765–770
    [Google Scholar]
  11. Dickinson J. R., Hewlins M. J. E. 1988; A study of the role of the hexose monophosphate pathway with respect to fatty acid biosynthesis in sporulation of Saccharomyces cerevisiae. J Gen Microbiol 134:333–337
    [Google Scholar]
  12. Dickinson J. R., Hewlins M. J. E. 1991; 13C NMR analysis of a developmental pathway mutation in Saccharomyces cerevisiae reveals a cell derepressed for succinate dehydrogenase . J Gen Microbiol 137:1033–1037
    [Google Scholar]
  13. Dickinson J. R., Williams A. S. 1986; A genetic and biochemical analysis of the role of gluconeogenesis in sporulation of Saccharomyces cerevisiae. J Gen Microbiol 132:2605–2610
    [Google Scholar]
  14. Dickinson J. R., Dawes I. W., Boyd A. S. F., Baxter R. L. 1983; 13C NMR studies of acetate metabolism during sporulation of Saccharomyces cerevisiae . Proc Natl Acad Sci USA 80:5847–5851
    [Google Scholar]
  15. Fraenkel D. G. 1982 Carbohydrate metabolism. The Molecular Biology of the Yeast Saccharomyces cerevisiae Life Cycle and Inheritance pp 1–37 Edited by Strathern J. N., Jones E. W., Broach J. R. Cold Spring Harbor: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  16. Gamo F.-J., Portillo F., Gancedo C. 1993; Characterization of mutations that overcome the toxic effect of glucose on phosphoglucose isomerase less strains of Saccharomyces cerevisiae. FEMS Microbiol Lett 106:233–238
    [Google Scholar]
  17. Goffrini P., Wéslowski-Louvel M., Ferrero I. 1991; A phosphoglucose isomerase gene is involved in the rag phenotype of the yeast Kluyveromyces lactis. Mol & Gen Genet 228:401–409
    [Google Scholar]
  18. Herrera L. S., Pascual C. 1978; Genetical and biochemical studies of glucosephosphate isomerase deficient mutants in Saccharomyces cerevisiae. J Gen Microbiol 108:305–310
    [Google Scholar]
  19. Lloyd D., James C. J., Chapman A., Dickinson J. R. 1993; Combined 13C NMR and mass-spectrometry for non-invasive monitoring of metabolism . Biotechnol Tech 7:85–90
    [Google Scholar]
  20. London R. E. 1988; 13C labelling in studies of metabolic regulation . Progress in NMR Spectroscopy 20:337–383
    [Google Scholar]
  21. Maitra P. K. 1971; Glucose and fructose metabolism in a phosphoglucoisomeraseless mutant of Saccharomyces cerevisiae. J Bacteriol 107:759–769
    [Google Scholar]
  22. Maitra P. K., Lobo Z. 1971; A kinetic study of glycolytic enzyme synthesis in yeast. J Biol Chem 246:475–488
    [Google Scholar]
  23. Mortimer R. K., Hawthorne D. C. 1975; Genetic mapping in yeast. Methods Cell Biol 11:221–233
    [Google Scholar]
  24. Paquin C. E., Williamson V. M. 1986; Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 °C of Saccharomyces cerevisiae strains lacking ADH1. Mol Cell Biol 6:70–79
    [Google Scholar]
  25. Sherman F. 1975; Use of micromanipulators in yeast studies. Methods Cell Biol 11:189–199
    [Google Scholar]
  26. Tchola O., Horecker B. L. 1966; Transaldolase. Methods Envy mol 9:499–505
    [Google Scholar]
  27. Vinopal R. T., Hillman J. D., Schulman H., Reznikoff W. S., Fraenkel D. G. 1975; New phosphoglucose isomerase mutants of Escherichia coli. J Bacteriol 122:1172–1174
    [Google Scholar]
  28. Williamson W. T., Wood W. A. 1966; D-Ribulose-5-phosphate-3-epimerase. Methods EnZymol 9:605–608
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-385
Loading
/content/journal/micro/10.1099/13500872-141-2-385
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error