1887

Abstract

SUMMARY: A gene was found in which encodes a protein highly homologous to the gene product, the S1 ribosomal protein. The protein contains the domain responsible for binding to ribosomes and two S1 motifs, instead of four as found in the protein. The protein is similar in this way to the equivalent protein of plant chloroplast ribosomes, supposed to be the counterpart of S1. The gene is expressed during vegetative growth in at the transcriptional and translational levels, as judged by Northern hybridization and expression in a translational fusion with a reporter gene. In contrast to the situation, it can be inactivated without dramatic effects on cell viability. Southern hybridization of the DNA fragment encoding this gene revealed specific homologous fragments in all other Gram-positive bacteria tested. The hybridization pattern with suggests the presence of at least two homologous genes in this bacterium. We show that in the ORF preceding the homologue encodes a protein which is highly similar to the product of the gene which is located upstream of Again, in contrast to the situation, where these genes are co-transcribed, in they are separated by a transcription terminator and the homologue is transcribed during sporulation. We suggest that during the evolution very similar structures and genetic organization of these two genes were conserved but acquired different functions in Gram-negative and Gram-positive bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-311
1995-02-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-311.html?itemId=/content/journal/micro/10.1099/13500872-141-2-311&mimeType=html&fmt=ahah

References

  1. Azevedo V., Alvarez E., Zumstein E., Damiani G., Sgaramella V., Ehrlich S. D., Serror P. 1993a; An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes. . Proc Natl Acad Sci USA 90:6047–6051
    [Google Scholar]
  2. Azevedo V., Sorokin A., Ehrlich S.D., Serror P. 1993b; The transcriptional organization of the Bacillus subtilis 168 chromosome region between the spoUAF and serA genetic loci. . Mol Microbiol 10:397–405
    [Google Scholar]
  3. Company M., Arenas J., Abelson J. 1991; Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA.. Nature 349:487–493
    [Google Scholar]
  4. Dear S., Staden R. 1991; A sequence assembly and editing for efficient management of large projects.. Nucleic Acids Ret 19:3907–3911
    [Google Scholar]
  5. Dome A.M., Eneas-Filho J., Heizmann P., Mache R. 1984; Comparison of ribosomal proteins of chloroplast from spinach and of E. coli. . Mol & Gen Genet 193:129–134
    [Google Scholar]
  6. Errington J. 1986; A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis. . J Gen Microbiol 132:2953–2961
    [Google Scholar]
  7. Farwell M.A., Roberts M. W., Rabinowitz J. C. 1992; The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. . Mol Microbiol 6:3375–3383
    [Google Scholar]
  8. Fox G.E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W.E., Tanner R., Magrum L., Zablen L.B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K. N., Woese C. R. 1980; The phylogeny of prokaryotes.. Science 209:457–463
    [Google Scholar]
  9. Franzetti B., Zhou D.-X., Mache R. 1992a; Structure and expression of the nuclear gene coding for the plastid CS1 ribosomal protein from spinach.. Nucleic Acids Ret 20:4153–4157
    [Google Scholar]
  10. Franzetti B., Carol P., Mache R. 1992b; Characterization and RNA-binding properties of a chloroplast S1 -like ribosomal protein.. J Biol Chem 267:19075–19081
    [Google Scholar]
  11. Giorginis S., Subramanian A. R. 1980; The major ribosome binding site of Escherichia coli ribosomal protein S1 is located in its N-terminal segment. . J Mol Biol 141:393–408
    [Google Scholar]
  12. Hahn V., Stiegler P. 1986; An Escherichia coli S1-like ribosomal protein is immunologically conserved in Gram-negative bacteria, but not in Gram-positive bacteria. . FEMS Microbiol Lett 36:293–297
    [Google Scholar]
  13. Higgins D.G., Sharp P. 1988; clustal:a package for performing multiple sequence alignment on a microcomputer.. Gene 73:237–244
    [Google Scholar]
  14. Higo K., Held W., Kahan L., Nomura M. 1973; Functional correspondence between 30S ribosomal proteins of Escherichia coli and Bacillus stearothermophilus. . Proc Natl Acad Sci USA 70:944–948
    [Google Scholar]
  15. Higo K., Otaka E., Osawa S. 1982; Purification and characterization of 30S ribosomal proteins from Bacillus subtilis-. correlation to Escherichia coli 30S proteins. . Mol & Gen Genet 185:239–244
    [Google Scholar]
  16. Isono K., Isono S. 1975; Lack of ribosomal protein S1 in Bacillus stearothermophilus. . Proc Natl Acad Set USA 73:767–770
    [Google Scholar]
  17. K¡takawa M., Isono K. 1982; An amber mutation in the gene rpsA for ribosomal protein S1 in Escherichia coli. . Mol & Gen Genet 185:445–447
    [Google Scholar]
  18. Kolb A., Hermoso J. M., Thomas J. O., Szer W. 1977; Nucleic acid helix-unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes.. Proc Natl Acad Sci USA 74:2379–2383
    [Google Scholar]
  19. Levin P., Losick R. 1994; Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. . J Bacteriol 176:1451–1459
    [Google Scholar]
  20. Lewandoski M., Smith I. 1988; Use of versatile lacZ vector to analyse the upstream region of the Bacillus subtilis spoOF gene. . Plasmid 20:148–154
    [Google Scholar]
  21. Miller J. H. 1972; Experiments in Molecular Genetics. . Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
    [Google Scholar]
  22. Muralikrishna P., Suryanarayana T. 1985; Comparison of ribosomes from Gram-positive bacteria with respect to the presence of protein S1.. Biochem Int 11:691–699
    [Google Scholar]
  23. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology.. J Bacteriol 176:1–6
    [Google Scholar]
  24. Ono M., Kuwano M., Mizushima S. 1979; Genetic analysis of a mutation affecting ribosomal protein S1 in Escherichia coli. . Mol & Gen Genet 174:11–15
    [Google Scholar]
  25. Pedersen S., Skouv J., Kajitani M., Ishihama A. 1984; Transcriptional organization of the rpsA operon of Escherichia coli. . Mol & Gen Genet 196:135–140
    [Google Scholar]
  26. Regnier P., Grunberg-Manago M., Portier C. 1987; Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. . J Biol Chem 262:63–68
    [Google Scholar]
  27. Roberts M. W., Rabinowitz J. C. 1989; The effect of Escherichia coli ribosomal protein S1 on the translational specificity of bacterial ribosomes. . J Biol Chem 264:2228–2235
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees.. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: A Eaboratory Manual,2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
    [Google Scholar]
  30. Schnier J., Faist G. 1985; Comparative studies on the structural gene for the ribosomal protein S1 in ten bacterial species.. Mol & Gen Genet 200:476–481
    [Google Scholar]
  31. Sorokin A., Zumstein E., Azevedo V., Ehrlich S.D., Serror P. 1993; The organisation of the Bacillus subtilis 168 chromosome region between spoVA and serA genetic loci, based on sequence data. . Mol Microbiol 10:385–395
    [Google Scholar]
  32. Suryanarayana T., Subramanian A. R. 1979; Functional domains of Escherichia coli ribosomal protein S1. . J Mol Biol 127:41–54
    [Google Scholar]
  33. Vellanoweth R. L., Rabinowitz J. C. 1992; The influence of ribosome-binding site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. . Mol Microbiol 6:1105–1114
    [Google Scholar]
  34. Yamanaka K., Ogura T., Niki H., Hiraga S. 1992; Identification and characterization of smbA gene, a suppressor of the mukB null mutant in Escherichia coli. . J Bacteriol 174:7517–7526
    [Google Scholar]
  35. Yamanaka K., Ogura T., Koonin E.V., Niki H., Hiraga S. 1994; Multicopy suppressors, mssA and mssB, of an smbA mutation of Escherichai coli. . Mol & Gen Genetics 243:9–16
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-311
Loading
/content/journal/micro/10.1099/13500872-141-2-311
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error