1887

Abstract

SUMMARY: The nucleotide sequence of 20 kb contiguous to the locus of was determined. Six ORFs were recognized, one of which extended for 13 341 nucleotides. Their predicted products have significant similarities to proteins with known functions involved in the synthesis of polypeptides and polyketides or in fatty acid metabolism. At the nucleotide level, three regions with a high level of sequence identity (49-54%) to the gene, responsible for the synthesis of a polyketide pigment, were recognized. The observed similarities suggest that the 20 kb region and the previously reported 13-6 kb region containing are part of the same locus, possibly involved in secondary metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-299
1995-02-01
2021-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-299.html?itemId=/content/journal/micro/10.1099/13500872-141-2-299&mimeType=html&fmt=ahah

References

  1. Albertini A.M, Galizzi A. Amplification of a chromosomal region in Bacillus subtilts . J Bacteriol 1985; 162:1203–1211
    [Google Scholar]
  2. Albertini A.M, Caramori T., Crabb W.D, Scoffone F., Galizzi A. The flaA locus of Ъacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and ATPase-like polypeptide . J Bacter¿ol 1991; 173:3573–3579
    [Google Scholar]
  3. Altschul S.F, Gish W., Miller W., Myers E.W, Lipman D.J. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410
    [Google Scholar]
  4. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 1991; 19:2241–2245
    [Google Scholar]
  5. Cosmina P., Rodríguez F., de Ferra F., Grandi G., Perego M., Venema G., van Sinderen V. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis . Mol Microbiol 1993; 8:821–831
    [Google Scholar]
  6. Donadio S., Staver M.J, McAlpine J.B, Swanson S.j, Katz L. Modular organization of genes required for complex polyketide biosynthesis. Science 1991; 252:675–679
    [Google Scholar]
  7. D’Souza C., Makano M.M, Corbell N., Zuber P. Amino-acylation site mutations in amino-acid activating domains of surfactin synthetase: effects on surfactin production and competence development in Bacillus subtilis . J Bacteriol 1993; 175:3502–3510
    [Google Scholar]
  8. Ferrari E., Henner D.J, Hoch J. Isolation of Bacillus subtilis genes from a Charon 4A library . J Bacteriol 1981; 146:430–432
    [Google Scholar]
  9. Fuma S., Fujishima Y., Corbell N., D’Souza C., Nakano M.M, Zuber P., Yamane K. Nucleotide sequence of the 5′ portion of srfA that contains the region required for competence establishment in Bacillus subtilis . Nucleic Acids Res 1993; 21:93–97
    [Google Scholar]
  10. Glaser P., Kunst F., Arnaud M., Coudart M.-P, Gonzales W., Hullo M.-F, lonescu M., Lubochinsky B., Marcelino L., Moszer I., Presecan E., Santana M., Schneider E., Schweizer J., Vertès A., Rapoport G., Danchin A. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333° . Mol Microbiol 1993; 10:371–384
    [Google Scholar]
  11. Gocht M., Marahiel M. Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site directed mutagenesis. J Bacteriol 1994; 176:2654–2662
    [Google Scholar]
  12. Hanahan D. Techniques for transformation of E. coli . In DNA Cloning: a Practical Approach 1985; 1:109–132 Glover D.M. Oxford: IRL Press;
    [Google Scholar]
  13. Higgins D.G, Bleasby A.J, Fuchs R. clustal v:improved software for multiple sequence alignment. CABIOS 1992; 8:189–191
    [Google Scholar]
  14. Katz L., Donadio S. Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol 1993; 47:875–912
    [Google Scholar]
  15. Kunst F., Devine K. The project of sequencing the entire Bacillus subtilis genome . Res Microbiology 1991; 142:905–912
    [Google Scholar]
  16. Lloyd A.T, Sharp P.M. codons: a microcomputer program for codon usage analysis. J Hered 1992; 83:239–240
    [Google Scholar]
  17. Mayorga M.E, Timberlake W.E. The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases . Mol & Gen Genet 1992; 235:205–212
    [Google Scholar]
  18. Ogasawara N., Nakai S., Yoshikawa H. Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin . DNA Res 1994; 1:1–14
    [Google Scholar]
  19. Pearson W.R. Rapid and sensitive sequence comparison with fastp and fasta. Methods Enŗymol 1990; 183:63–98
    [Google Scholar]
  20. Perego M. Integrational vectors for genetic manipulation in Bacillus subtilis . In Bacillus subtilis and Other Gram-positive Bacteria 1993615–624 Sonenshein A.L., Hoch J.A, Losick R. Washington DC: American Society for Microbiology;
    [Google Scholar]
  21. Plunkett G., III Burland V., Daniels D., Blattner R. Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes . Nucleic Acids Res 1993; 21:3391–3398
    [Google Scholar]
  22. Pustell J., Kafatos F.C. A convenient and adaptable package of computer programs for DNA and protein sequence management analysis and homology determination. Nucleic Acids Res 1984; 2:643–655
    [Google Scholar]
  23. Sambrook J., Fritsch E.F, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd edn. 1989 Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Schuler G.D, Altschul S.F, Lipman D.J. A workbench for Multiple Alignment construction and analysis. Proteins Struct Eunct Genet 1991; 9:180–190
    [Google Scholar]
  25. Scotti C., Piatti M., Cuzzoni A., Perani P., Tognon¡ A., Grandi G., Galizzi A., Albertini A.M. A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases . Gene 1993; 130:65–71
    [Google Scholar]
  26. Sharp P.M, Higgins D.G, Shields D.C, Devine KM, Hoch J.A. Bacillus subtilis gene sequences . In Genetics and Biotechnology of Bacilli 1990; 389–98 Zukoswski M.M., Ganesan A.T, Hoch J.A. San Diego: Academic Press;
    [Google Scholar]
  27. Shields D.C, Sharp P.M. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases . Nucleic Acids Res 1987; 15:8023–8040
    [Google Scholar]
  28. Sorokin A., Zumnstein E., Azevedo V., Ehrlich D., Serror P. The organization of the Bacillus subtilis 168 chromosome region between the spoV A and ser A genetic loci based on sequence data . Mol Microbiol 1993; 10:385–395
    [Google Scholar]
  29. Turgay K., Krause M., Marhaiel M.A. Four homology domains in the primary structure of GrsB are related to domains in the super family of adenylate-forming enzymes. Mol Microbiol 1992; 6:529–546
    [Google Scholar]
  30. Zuber P., Nakano M.M, Marahiel M.A. Peptide antibiotics. In Bacillus subtilis and Other Gram-positive Bacteria 1993897–916 Sonenshein A.L., Hoch J.A, Losick R. Washington DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-299
Loading
/content/journal/micro/10.1099/13500872-141-2-299
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error