1887

Abstract

Summary: Cells of the oral bacterium CN3410 produce lateral tufts of cell-surface fibrils of two lengths. Treatment of cells with trypsin resulted in loss of the tufts and release of longer fibrils intact. SDS-PAGE analysis of trypsin extracts containing fibrils revealed two groups of high molecular mass polypeptides which were denoted group A (molecular mass 227-246 kDa) and group B (molecular mass 175-208 kDa). Antibodies were raised to these two groups of trypsin-extracted polypeptides (TEPs) and to purified fibrils, and the reactivities of the three different antisera were found to be similar both on nitrocellulose blots of cell-surface polypeptides and in ELISA with whole cells. Similar patterns of TEPs were obtained from cells of a spontaneously derived mutant strain, KP34V, which lacked the short fibril components of tufts. Cells of strain KP34V had similar cell-surface hydrophobicity to strain CN3410 cells, and adhered to the same extent to parotid salivary pellicle or human buccal epithelial cells (BECs) as the wild-type cells. Trypsin treatment of strain CN3410 cells abolished their surface hydrophobicity and ability to adhere to BECs, but did not affect streptococcal cell binding to experimental salivary pellicle. Antibodies to TEPs or fibrils had no effect on cell adhesion to BECs or salivary pellicle. The results imply that the short fibril components of tufts are not involved in the cell adhesion properties tested. It is suggested that the TEPs are components of long fibrils, but they are not determinants of streptococcal cell adhesion to pellicle or to epithelial cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-10-2729
1995-10-01
2021-10-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/10/mic-141-10-2729.html?itemId=/content/journal/micro/10.1099/13500872-141-10-2729&mimeType=html&fmt=ahah

References

  1. Andersen R.N., Ganeshkumar N., Kolenbrander P.E. 1993; Cloning of the Streptococcus gordonii PK488 gene, encoding an adhesin which mediates coaggregation with ActinomycesnaeslundiiPK606.. Infect Immun 61:981–987
    [Google Scholar]
  2. Bleiweis A.S., Oyston P.C.F., Brady L.J. 1992; Molecular, immunological and functional characterization of the major surface adhesin of Streptococcus mutans.. In Genetically Engineered Vaccines pp. 229–241 Edited by Ciardi J. E., McGhee J. R., Keith J. M. New York: Plenum Press;
    [Google Scholar]
  3. Busscher H.J., Handley P.S., Rouxhet P.G., Hesketh L.M., van der Mei H.C. 1991; The relationship between structural and physicochemical surface properties of tufted Streptococcus sanguis strains.. In Microbial Cell Surface Analysis pp. 317–338 Edited by Moses N., Handley P. S., Busscher H. J., Rouxhet P. G. New York: VCH Publishers;
    [Google Scholar]
  4. Cisar J.O., Barsumian E.L., Siraganian R.P., Clark W.B., Yeung M.K., Hsu S.D., Curl S.H., Vatter A.E., Sandberg A.L. 1991; Immunochemical and functional studies of Actinomycesviscosus T14V type 1 fimbriae with monoclonal and polyclonal antibodies directed against the fimbrial subunit.. J Gen Microbiol 137:1971–1979
    [Google Scholar]
  5. Doyle R.J., Rosenberg M., Drake D. 1990; Hydrophobicity of oral bacteria.. In Microbial Cell Surface Hydrophobicity pp. 387–419 Edited by Doyle R. J., Rosenberg M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. 1956; Colorimetric method for determination of sugars and related substances.. Anal Chem 28:350–354
    [Google Scholar]
  7. Eifert R., Rosan B., Golub E. 1984; Optimization of an hydroxyapatite adhesion assay for Streptococcus sanguis.. Infect Immun 44:287–291
    [Google Scholar]
  8. Fenno J.C., LeBlanc D.J., Fives-Taylor P. 1989; Nucleotide sequence analysis of a type 1 fimbrial gene of Streptococcus sanguisFW213.. Infect Immun 57:3527–3533
    [Google Scholar]
  9. Fives-Taylor P.M., Thompson D.W. 1985; Surface properties of Streptococcus sanguis FW213 mutantsnonadherent to saliva-coated hydroxyapatite.. Infect Immun 47:752–759
    [Google Scholar]
  10. Frandsen E.V.G., Pedrazzoli V., Kilian M. 1991; Ecology of viridans streptococci in the oral cavity and pharynx.. Oral Microbiol Immunol 6:129–133
    [Google Scholar]
  11. Ganeshkumar N., Hannam P.M., Kolenbrander P.E., McBride B.C. 1991; Nucleotide sequence of a gene coding for a salivabinding protein (SsaB) from Streptococcus sanguis 12 and possible role of the protein in coaggregation with actinomyces.. Infect Immun 59:1093–1099
    [Google Scholar]
  12. Gibbons R.J., Etherden I., Skobe Z. 1983; Association of fimbriae with the hydrophobicity of Streptococcus sanguis FC-1 and adherence to salivary pellicles.. Infect Immun 41:414–417
    [Google Scholar]
  13. Handley P.S. 1990; Structure, composition and functions of surface structures on oral bacteria.. Biofouling 2:239–264
    [Google Scholar]
  14. Handley P.S. 1991; Negative staining.. In Microbial Cell Surface Analysis pp. 63–86 Edited by Moses N., Handley P. S., Busscher H. J., Rouxhet P. G. New York: VCH Publishers;
    [Google Scholar]
  15. Handley P.S., Carter P.L., Fielding J. 1984; Streptococcus salivarius strains carry either fibrils or fimbriae on the cell surface.. J Bacteriol 157:64–72
    [Google Scholar]
  16. Handley P.S., Carter P.L., Wyatt J.E., Hesketh L.M. 1985; Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera.. Infect Immun 47:217–227
    [Google Scholar]
  17. Handley P., Coykendall A., Beighton D., Hardie J.M., Whiley R.A. 1991; Streptococcus crista sp. nov., a viridans streptococcus with tufted fibrils, isolated from the human oral cavity and throat.. Int J Syst Bacteriol 41:543–547
    [Google Scholar]
  18. Hawkins B.W., Cannon R.D., Jenkinson H.F. 1993; Interactions of Actinomycesnaeslundii strains T14V and ATCC 12104 with saliva, collagen and fibrinogen.. Arch Oral Biol 38:533–535
    [Google Scholar]
  19. Hesketh L.M., Wyatt J.E., Handley P.S. 1987; Effect of protease on cell surface structure, hydrophobicity and adhesion of tufted strains of Streptococcus sanguis biotypes I and II.. Microbios 50:131–145
    [Google Scholar]
  20. Higgins R.C., Dahmur M.E. 1979; Rapid visualisation of protein bands in preparative SDS-polyacrylamide gels.. Anal Biochem 93:1575–1589
    [Google Scholar]
  21. Jenkinson H.F. 1986; Cell-surface proteins of Streptococcus sanguisassociated with cell hydrophobicity and coaggregation properties.. J Gen Microbiol 132:1575–1589
    [Google Scholar]
  22. Jenkinson H.F. 1992; Adherence, coaggregation, and hydrophobicity of Streptococcus gordonii associated with expression of cell surface lipoproteins.. Infect Immun 60:1225–1228
    [Google Scholar]
  23. Jenkinson H.F. 1994; Cell surface protein receptors in oral streptococci.. FEMS Microbiol Lett 121:133–140
    [Google Scholar]
  24. Jenkinson H.F., Easingwood R.A. 1990; Insertional inactivation of the gene encoding a 76-kilodalton cell surface polypeptide in Streptococcus gordonii Challis has a pleiotropic effect on cell surface composition and properties.. Infect Immun 58:3689–3697
    [Google Scholar]
  25. Jenkinson H.F., Terry S.D., McNab R., Tannock G.W. 1993; Inactivation of the gene encoding surface protein SspA in Streptococcus gordonii DL1 affects cell interactions with human salivary agglutinin and oral actinomyces.. Infect Immun 61:3199–3208
    [Google Scholar]
  26. Kilian M., Mikkelsen L, Henrichsen J. 1989; Taxonomic study of viridans streptococci: description of Streptococcus gordonii sp. nov.and emended description of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906).. Int J Syst Bacteriol 39:471–484
    [Google Scholar]
  27. Kolenbrander P.E., London J. 1993; Adhere today, here tomorrow: oral bacterial adherence.. J Bacteriol 175:3247–3252
    [Google Scholar]
  28. Kolenbrander P.E., Andersen R.N., Ganeshkumar N. 1994; Nucleotide sequence of the Streptococcus gordonii PK488 coaggregationadhesin genes, scaA, and ATP-binding cassette.. Infect Immun 62:4469–4480
    [Google Scholar]
  29. Kuehn M.J., Heuser J., Normark S., Hultgren S.J. 1992; P pili in uropathogenicE. coli are composite fibres with distinct fibrillar adhesive tips.. Nature 356:252–255
    [Google Scholar]
  30. Laemmli U.K., Favre M. 1973; Maturation of the head of bacteriophage T4. I. DNA packaging events.. J Mol Biol 80:575–599
    [Google Scholar]
  31. Lancy P. Jr Appelbaum B., Holt S.C., Rosan B. 1980; Quantitative in vitro assay for ‘ corncob ’ formation.. Infect Immun 29:663–670
    [Google Scholar]
  32. Lancy P. Jr Dirienzo J.M., Appelbaum B., Rosan B., Holt S.C. 1983; Corncob formation between Fusobacteriumnucleatum and Streptococcus sanguis.. Infect Immun 40:303–309
    [Google Scholar]
  33. McNab R., Jenkinson H.F. 1992a; Gene disruption identifies a 290 kDa cell-surface polypeptide conferring hydrophobicity and coaggregation properties in Streptococcus gordonii. . Mol Microbiol 6:2939–2949
    [Google Scholar]
  34. McNab R., Jenkinson H.F. 1992b; Aggregation-deficient mutants of Streptococcus gordoniiChannon altered in production of cell-surface polysaccharide and proteins.. Microb Ecol Health Dis 5:277–289
    [Google Scholar]
  35. McNab R., Jenkinson H.F., Loach D.M., Tannock G.W. 1994; Cell-surface-associated polypeptides CshA and CshB of high molecular mass are colonization determinants in the oral bacterium Streptococcus gordonii.. Mol Microbiol 14:743–754
    [Google Scholar]
  36. Morris J.E., Ganeshkumar N., Song M., McBride B.C. 1987; Identification and preliminary characterization of a Streptococcus sanguisfibrillar glycoprotein.. J Bacteriol 169:164–171
    [Google Scholar]
  37. Morrissey J.H. 1981; Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity.. Anal Biochem 117:307–310
    [Google Scholar]
  38. Mouton C., Reynolds H.S., Genco R.J. 1980; Characterization of tufted streptococci isolated from the ‘ corn cob ’ configuration of human dental plaque.. Infect Immun 27:235–245
    [Google Scholar]
  39. Oakley J.D., Taylor K.G., Doyle R.J. 1985; Trypsin-susceptible cell surface characteristics of Streptococcus sanguis.. Can J Microbiol 31:1103–1107
    [Google Scholar]
  40. Ofek I., Doyle R.J. 1994 Bacterial Adhesion to Cells and Tissues. London: Chapman & Hall;
    [Google Scholar]
  41. Oligino L, Fives-Taylor P. 1993; Overexpression and purification of a fimbria-associated adhesin of Streptococcus parasanguis.. Infect Immun 61:1016–1022
    [Google Scholar]
  42. Rosenberg M., Gutnick D., Rosenberg E. 1980; Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity.. FEMS Microbiol Lett 9:29–33
    [Google Scholar]
  43. Shannon I.L., Prigmore J.R., Chauncey H.H. 1962; Modified Carlson-Crittenden device for the collection of parotid fluid.. J Dent Res 41:778–783
    [Google Scholar]
  44. Socransky S.S., Manganiello A.D., Propas D., Oram V., van Houte J. 1977; Bacteriological studies of developing supragingival dental plaque.. J Periodontal Res 12:90–106
    [Google Scholar]
  45. Sokurenko E.V., Courtney H.S., Ohman D.E., Klemm P., Hasty D.L. 1994; FimH family of type 1 fimbrialadhesins: functional heterogeneity due to minor sequence variations among JimH genes.. J Bacteriol 176:748–755
    [Google Scholar]
  46. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.. Proc Natl Acad Sci USA 764350–4354
    [Google Scholar]
  47. Weerkamp A.H., Handley P.S., Baars A., Slot J.W. 1986a; Negative staining and immunoelectron microscopy of adhesion- deficient mutants of Streptococcus salivarius reveal that the adhesive proteins are separate classes of cell surface fibril.. J Bacteriol 165:746–755
    [Google Scholar]
  48. Weerkamp A.H., van der Mei H.C., Liem R.S.B. 1986b; Structural properties of fibrillar proteins isolated from the cell surface and cytoplasm of Streptococcus salivarius (K+) cells and nonadhesive mutants.. J Bacteriol 165:756–762
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-10-2729
Loading
/content/journal/micro/10.1099/13500872-141-10-2729
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error