The gene of A3(2) encodes an inessential elongation factor Tu that is apparently subject to positive stringent control Free

Abstract

Summary: In A3(2), two genes, and , encode the apparent polypeptide chain elongation factors EF-Tu1 and EF-Tu3, respectively. While appears to code for the major EF-Tu, the function of is unknown. To assess the role of EF-Tu3, was subjected to mutational and transcriptional analyses. Replacement of the 5′-half of by an antibiotic resistance cassette had no detectable effect on phenotype, indicating that is not essential for growth or differentiation. The transcription start site of was located approximately 195 nt upstream of the translation start site. The sequence of the promoter (P) resembles the consensus for the major class of eubacterial promoters, and P was recognized preferentially by an RNA polymerase fraction enriched in α, the principal . factor of . Nuclease S1 mapping failed to reveal transcripts during growth of in liquid culture, consistent with the apparent absence of EF-Tu3 in total protein extracts of the same strain. However, transcription was observed in cultures of M145 shortly after nutritional shiftdown (which resulted in the disappearance of ) and after addition of serine hydroxamate, both of which induce the stringent response. Transcription of was also observed in transition-phase and stationary-phase cultures of J1681, a strain deleted for (which specifies a tRNA for the rare leucine codon UUA). In all of these examples, transcription of followed the production of ppGpp, consistent with the hypothesis that is subject to positive stringent control.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-10-2519
1995-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/10/mic-141-10-2519.html?itemId=/content/journal/micro/10.1099/13500872-141-10-2519&mimeType=html&fmt=ahah

References

  1. Angell S., Lewis C.G., Buttner M.J., Bibb M.J. 1994; Glucose repression in Streptomyces coelicolor A3(2): a likely regu-latory role for glucose kinase.. Mol & Gen Genet 244:135–143
    [Google Scholar]
  2. Brown K.L., Wood S., Buttner M.J. 1992; Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2); renaturation of a sigma subunit using GroEL.. Mol Microbiol 6:1133–1139
    [Google Scholar]
  3. Buttner M.J., Brown N.L. 1985; RNA polymerase-DNA interactions in Streptomyces. In vitro studies of a S. lividans plasmid promoter with S. coelicolor RNA polymerase.. J Mol Biol 185:177–188
    [Google Scholar]
  4. Cashel M., Rudd K.E. 1987; The stringent response.. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 1410–1438 Edited by Neidhardt F. C., Ingraham J. L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Champness W.C., Chater K.F. 1994; Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp.. In Regulation of Bacterial Differentiation pp. 61–93 Edited by Piggot P., Youngman P., Moran C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Chater K.F., Bruton C.J., King A.A., Suarez J.E. 1982; The expression of Streptomyces and Escherichia coli drug-resistance determinants cloned into the Streptomyces phage фC31.. Gene 19:21–33
    [Google Scholar]
  7. Clayton T.M., Bibb M.J. 1990; Streptomyces promoter-probe plasmids that utilise the xylE gene of Pseudomonas putida. . Nucleic Acids Res 18:1077
    [Google Scholar]
  8. Covarrubias L., Bolivar F. 1982; Construction and characterization of new cloning vehicles. VI. Plasmid pBR329, a new derivative of pBR328 lacking the 482-base-pair inverted duplication.. Gene 17:79–89
    [Google Scholar]
  9. Fernández-Moreno M.A., Caballero J.L., Hopwood D.A., Malpartida F. 1991; The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the hid A transfer RNA gene of Streptomyces. . Cell 66:769–780
    [Google Scholar]
  10. Gaal T., Gourse R.L. 1990; Guanosine-3´-diphosphate 5´- diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli. . Proc Natl Acad Sci USA 875533–5537
    [Google Scholar]
  11. Gentry D.R., Hernandez V.J., Nguyen L.H., Jensen D.B., Cashel M. 1993; Synthesis of the stationary-phase sigma factor (δs is positively regulated by ppGpp.. J Bacteriol 175:7982–7989
    [Google Scholar]
  12. Hawley D.K., McClure W.R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences.. Nucleic Acids Res 11:2237–2255
    [Google Scholar]
  13. Hengge-Aronis R. 1993; Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. . Cell 29:165–168
    [Google Scholar]
  14. Hernandez V.J., Bremer H. 1990; Guanosine tetraphosphate (ppGpp) dependence of the growth rate control of rrnB PI promoter activity in Escherichia coli. . J Biol Chem 265:11605–11614
    [Google Scholar]
  15. Hernandez V.J., Bremer H. 1993; Characterization of RNA and DNA synthesis in Escherichia coli strains devoid of ppGpp.. J Biol Chem 268:10851–10862
    [Google Scholar]
  16. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  17. Lange R., Hengge-Aronis R. 1994; The cellular concentration of the s subunit of RNA polymerase in Escherichia coli is controlled at the level of transcription, translation, and protein stability.. Genes & Dev 8:1600–1612
    [Google Scholar]
  18. Lawlor E.J., Baylis H.A., Chater K.F. 1987; Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2).. Genes & Dev 1:1305–1310
    [Google Scholar]
  19. Leskiw B.K., Mah R., Lawlor E.J., Chater K.F. 1993; Accumulation of bldA-specified tRNA is temporally regulated in Streptomyces coelicolor A3(2).. J Bacteriol 175:1995–2005
    [Google Scholar]
  20. Lindahl L., Zengel J.M. 1986; Ribosomal genes in Escherichia coli. . Annu Rev Genet 20:297–326
    [Google Scholar]
  21. van der Meide P., Vijgenboom E., Talens A., Bosch L. 1983; The role of EF-Tu in the expression of tufA and tufB genes.. Eur J Biochem 130:397–107
    [Google Scholar]
  22. Messing J., Crea R., Seeburg P.H. 1981; A system for shotgun DNA sequencing.. Nucleic Acids Res 9:309–321
    [Google Scholar]
  23. Murray M.G. 1986; Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping.. Anal Biochem 158:165–170
    [Google Scholar]
  24. Ochi K. 1986; Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation.. J Gen Microbiol 132:2621–2631
    [Google Scholar]
  25. Ochi K. 1987; Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor.. J Bacteriol 169:3608–3626
    [Google Scholar]
  26. Ohlsen K.L., Gralla J.D. 1992; Interrelated effects of DNA supercoiling, ppGpp, and low salt on melting within the Escherichia coli rrnB P1 promoter.. Mol Microbiol 6:2243–2251
    [Google Scholar]
  27. Prentki P., Krisch H.M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment.. Gene 29:303–313
    [Google Scholar]
  28. Reeh S., Pedersen S., Friesen J.D. 1976; Biosynthetic regulation of individual proteins in reP and relA strains of Escherichia coli during amino acid starvation.. Mol & Gen Genet 149:279–289
    [Google Scholar]
  29. Ross W., Gosink K.K., Salomon J., Igarashi K., Zhou C., Ishihama A., Severinov K., Gourse R.L. 1993; A third recognition element in bacterial promoters: DNA binding by the subunit of RNA polymerase.. Science 262:1407–1412
    [Google Scholar]
  30. Rudd K.E., Bochner B.R., Cashel M., Roth J.R. 1985; Mutations in the spoT gene of Salmonella typhimurium: effects on his operon expression.. J Bacteriol 163:534–542
    [Google Scholar]
  31. Strauch E., Takano E., Baylis H.A., Bibb M.J. 1991; The stringent response in Streptomyces coelicolor A3(2).. Mol Microbiol 5:289–298
    [Google Scholar]
  32. Summerton J., Atkins T., Bestwick R. 1983; A rapid method for preparation of bacterial plasmids.. Anal Biochem 133:79–84
    [Google Scholar]
  33. Takano E., Bibb M.J. 1994; The stringent response, ppGpp and antibiotic production in Streptomyces coelicolor A3(2).. Actino- mycetes 8:1–16
    [Google Scholar]
  34. Takano E., Gramajo H.G, Strauch E., Andres N., White J., Bibb M.J. 1992; Transcriptional regulation of the redD trans-criptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2).. Mol Microbiol 5:289–298
    [Google Scholar]
  35. Takayanagi Y., Tanaka K., Takahashi H. 1994; Structure of the 5´ upstream region and the regulation of the rpoS gene of Escherichia coli. . Mol & Gen Genet 243:525–531
    [Google Scholar]
  36. Tan H., Chater K.F. 1993; Two developmentally controlled promoters of Streptomyces coelicolor A3(2) that resemble the major class of motility-related promoters in other bacteria.. J Bacteriol 175:933–940
    [Google Scholar]
  37. Tanaka K., Takayanagi Y., Fujita N., Ishihama A., Takahashi H. 1993; Heterogeneity of the principal σ factor in Escherichia coli-. the rpoS gene product, σ38, is a second principal σ factor of RNA polymerase in stationary-phase Escherichia coli. . Proc Natl Acad Sci USA 903511–3515
    [Google Scholar]
  38. Twigg A.J., Sherratt D. 1980; Trans-complementable copy number mutants of plasmid ColEl.. Nature 283:216–218
    [Google Scholar]
  39. Vijgenboom E., Woudt L.P., Heinstra P.W.H., Rietveld K., van Haarlem J., van Wezel G.P., Shochat S., Bosch L. 1994; Three tuf-like genes in the kirromycin producer Streptomyces ramocissimus. . Microbiology 140:983–998
    [Google Scholar]
  40. van Wezel G.P. 1994 Transcriptional regulation of translational genes in Streptomyces coelicolor A3 (2) PhD thesis University of Leiden, The Netherlands;
    [Google Scholar]
  41. van Wezel G.P., Woudt L.P., Vervenne R., Verdurmen M.L.A., Vijgenboom E., Bosch L. 1994a; Cloning and sequencing of the tuf genes of Streptomyces coelicolor A3(2).. Biochim Biophys Acta 1219:543–547
    [Google Scholar]
  42. van Wezel G.P., Krab I., Douthwaite S., Bibb M.J., Vijgenboom E., Bosch L. 1994b; Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon.. Microbiology 140:3357–3365
    [Google Scholar]
  43. van Wezel G.P., Buttner M.J., Vijgenboom E., Bosch L., Hopwood D.A., Kieser H.M. 1995; Mapping of genes involved in macromolecular synthesis on the chromosome of Streptomyces coelicolor A3(2).. J Bacteriol 177:473–476
    [Google Scholar]
  44. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
  45. Zukowski M.M., Gaffney D.F., Speck D., Kaufmann M., Findeli A., Wisecup A., Lecocq J.-P. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene.. Proc Natl Acad Sci USA 801101–1105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-10-2519
Loading
/content/journal/micro/10.1099/13500872-141-10-2519
Loading

Data & Media loading...

Most cited Most Cited RSS feed