The CrP operon of and Free

Abstract

Summary: One of the critical developmental events during the unique intracellular life cycle of Chlamydiae is their differentiation from a metabolically active, replicative form or reticulate body (RB) to an infectious extracellular form of the organism (elementary body or EB). This process is characterized by the expression of two extraordinarily cysteine-rich envelope proteins of molecular masses 9 kDa and 60 kDa. We describe the molecular cloning and sequence determination of the 9 kDa cysteine-rich proteins (CrPs) of and . Comparison of these 9 kDa CrP amino acid sequences with those of showed regions of structural variation and conservation. Transcription of the 9 kDa CrP genes occurred as both a monocistronic message and as a bicistronic message which included the 60 kDa CrP gene. Transcription of the 9 kDa and 60 kDa CrP genes was tightly linked to the chlamydial growth cycle with synthesis of their mRNAs and consequent translation of the 60 kDa CrPs occurring as RBs differentiated to form EBs. The maximal rate of transcription occurred late in the growth cycle from a single but highly conserved promoter which had close similarity with the consensus promoter sequences. A stem and loop structure which could be involved in regulating translation of mRNA occurred in all three species between the transcriptional start point and the ribosome binding site. Although transcription is initiated from a single promoter in all three chlamydial species, transcriptional termination points for the monocistronic and bicistronic mRNAs differ in both number and position.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-10-2489
1995-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/10/mic-141-10-2489.html?itemId=/content/journal/micro/10.1099/13500872-141-10-2489&mimeType=html&fmt=ahah

References

  1. Allan I., Hatch T.P., Pearce J.H. 1985; Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms.. J Gen Microbiol 131:3171–3177
    [Google Scholar]
  2. Allen J.E., Cerrone M.C., Beatty P.R., Stephens R.S. 1990; Cysteine-rich outer membrane proteins of Chlamydia trachomatisdisplay compensatory sequence changes between biovariants.. Mol Microbiol 4:1543–1550
    [Google Scholar]
  3. Barry C.E., Hayes S.F., Hackstadt T. 1992; Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog.. Science 256:377–379
    [Google Scholar]
  4. Barry C.E., Brickman T.J., Hackstadt T. 1993; Hc1 -mediated effects on DNA structure: a potential regulator of chlamydial development.. Mol Microbiol 9:273–283
    [Google Scholar]
  5. Carter M.W., Al-Mahdawi S.A.H., Giles I.G., Treharne J.D., Ward M.E., Clarke I.N. 1991; Nucleotide sequence and taxonomic value of the major outer membrane protein of Chlamydia pneumoniae IOL-207.. J Gen Microbiol 137:465–475
    [Google Scholar]
  6. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.. Anal Biochem 162:156–159
    [Google Scholar]
  7. Christiansen G., Pedersen L.B., Koehler J.E., Lundemose A., Birkelund S. 1993; Interaction between the Chlamydia trachomatishistone H1-like protein (Hc1) and DNA.. J Bacteriol 175:1785–1795
    [Google Scholar]
  8. Clarke I.N., Lambden P.R. 1988; Stable cloning of the amino terminus of the 60 kDa outer membrane protein of Chlamydia trachomatis serovar L1.. FEMS Microbiol Lett 51:81–86
    [Google Scholar]
  9. Clarke I.N., Lambden P.R., Everson S.J., Watson M.W. 1994; Molecular cloning, sequence and transcriptional analysis of the 9 kDa cysteine rich protein genes from Chlamydia psittaci and Chlamydia pneumoniae. . In Chlamydial Infections, Proceedings of the 8th International Symposium on Human Chlamydial Infections pp. 255–258 Orfila J., Byrne G.I., Chernesky M.A., Grayston J.T., Ridgway G.L., Saikku P., Schachter J., Stamm W.E., Stephens R.S. Edited by Bologna:: Societa Editrice Esculapo.;
    [Google Scholar]
  10. Collett B.A., Newhall W.J.V., Jersild R.A. Jr Jones R.B. 1989; Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy.. J Gen Microbiol 135:85–94
    [Google Scholar]
  11. Engel J.N., Ganem D. 1990; A polymerase chain reaction-based approach to cloning sigma factors from Eubacteria and its application to the isolation of a sigma-70 homolog from Chlamydia trachomatis.. J Bacteriol 172:2447–2455
    [Google Scholar]
  12. Everett K.D.E., Hatch T.P. 1991; Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC.. J Bacteriol 173:3821–3830
    [Google Scholar]
  13. Everett K.D.E., Hatch T.P. 1995; Architecture of the cell envelope of Chlamydia psittaci 6BC.. J Bacteriol 177:877–882
    [Google Scholar]
  14. Fukushi H., Hirai K. 1992; Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants.. Int J Syst Bacteriol 42:306–308
    [Google Scholar]
  15. Hatch T.P., Allan I., Pearce J.H. 1984; Structural and polypeptide differences between envelopes of infective and re-productive life cycle forms of Chlamydia spp.. J Bacteriol 157:13–20
    [Google Scholar]
  16. Hatch T.P., Fahr M., Everett K., Rosch A. 1990; Regulation of the life cycle of Chlamydia.. In Chlamydial Infections, Proceedings of the 7th International Symposium on Human Chlamydial Infections pp. 40–43 Bowie W.R., Caldwell H.D., Jones R.P., Mardh P., Ridgway G.L., Schachter J., Stamm W.E., Ward M.E. Edited by Cambridge:: Cambridge University Press.;
    [Google Scholar]
  17. Hatch T.P., Miceli M., Sublett J.E. 1986; Synthesis of disulphide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis.. J Bacteriol 165:379–385
    [Google Scholar]
  18. Higgins D.G., Sharp P.M. 1988; CLUSTAL: A package for performing multiple sequence alignments on a microcomputer.. Gene 73:237–244
    [Google Scholar]
  19. Koehler J.E., Burgess R.R., Thompson N.E., Stephens R.S. 1990; Chlamydia trachomatis RNA polymerase major α subunit: sequence and structural comparison of conserved and unique regions with Escherichia coli σ70 and Bacillus subtilis σ43.. J Biol Chem 265:13206–13214
    [Google Scholar]
  20. Kolb A., Busby S., Buc H., Garges S., Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein.. Annu Rep Biochem 62:749–795
    [Google Scholar]
  21. Lambden P.R., Everson J.S., Ward M.E., Clarke I.N. 1990; Sulfur-rich proteins of Chlamydia trachomatis: developmentally regulated transcription of polycistronic mRNA from tandem promoters.. Gene 87:105–112
    [Google Scholar]
  22. Mathews S.A., Sriprakash K.S. 1994; The RNA polymerase of Chlamydia trachomatis has a flexible sequence requirement at the −10 and −35 boxes of its promoters.. J Bacteriol 176:3785–3789
    [Google Scholar]
  23. Mathews S.A., Douglas A., Sriprakash K.S., Hatch T.P. 1993; In vitro transcription in Chlamydia psittaci and Chlamydia trachomatis.. Mol Microbiol 7:937–946
    [Google Scholar]
  24. Matthews K.S. 1992; DNA looping.. Microbiol Rev 56:123–136
    [Google Scholar]
  25. Newhall W.J.V. 1987; Biosynthesis and disulphide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis.. Infect Immun 55:162–168
    [Google Scholar]
  26. Newhall W.J.V., Basinski M.B. 1986; Purification and structural characterization of chlamydial outer membrane proteins.. In Chlamydial Infections, Proceedings of the 6th International Symposium on Human Chlamydial Infections pp. 93–96 Oriel D., Ridgway G.L., Schachter J., Taylor-Robinson D., Ward M.E. Edited by Cambridge:: Cambridge University Press.;
    [Google Scholar]
  27. Pedersen L.B., Birkelund S., Christiansen G. 1994; Interaction of the Chlamydia trachomatis histone H1-like protein (Hc-1) with DNA and RNA causes repression of transcription and translation in vitro.. Mol Microbiol 11:1085–1098
    [Google Scholar]
  28. Ricci S., Cevenini R., Cosco E., Comanducci M., Ratti G., ScarlatO V. 1993; Transcriptional analysis of the Chlamydia trachomatis plasmid pCT identifies temporally regulated transcripts, anti-sense RNA and σ70-selected promoters.. Mol & Gen Genet 231:318–326
    [Google Scholar]
  29. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription.. Annu Rev Genet 13:319–353
    [Google Scholar]
  30. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  31. Shine J., Dalgarno L. 1975; Determinant of cistron specificity in bacterial ribosomes.. Nature 254:34–38
    [Google Scholar]
  32. Stephens R.S., Wagar E.A., Edman U. 1988; Developmental regulation of tandem promoters for the major outer membrane protein gene of Chlamydia trachomatis.. J Bacteriol 170:744–750
    [Google Scholar]
  33. Storey C., Lusher M., Yates P., Richmond S. 1993; Evidence for Chlamydia pneumoniae of non-human origin.. J Gen Microbiol 139:2621–2626
    [Google Scholar]
  34. Store J. 1990; Chlamydia psittaci: diversity and emerging immunological classification.. In Chlamydial Infections, Proceedings of the 6th International Symposium on Human Chlamydial Infections pp. 363–373 Oriel D., Ridgway G.L., Schachter J., Taylor-Robinson D., Ward M.E. Edited by Cambridge:: Cambridge University Press.;
    [Google Scholar]
  35. Ward M.E. 1988; The chlamydial developmental cycle.. In Microbiology of Chlamydia pp. 71–95 Almen L. Barron. Edited by Boca Raton, Florida:: CRC Press.;
    [Google Scholar]
  36. Watson M.W., Lambden P.R., Ward M.E., Clarke I.N. 1988; Chlamydia trachomatis 60 kDa cysteine rich outer membrane protein: sequence homology between trachoma and LGV biovars.. FEMS Microbiol Lett 65:293–298
    [Google Scholar]
  37. Watson M.W., Lambden P.R., Everson J.S., Clarke I.N. 1994; Immunoreactivity of the 60 kDa cysteine-rich proteins of Chlamydia trachomatis, Chlamydia psittaci and Chlamydia pneumoniaeexpressed in Escherichia coli.. Microbiology 140:2003–2011
    [Google Scholar]
  38. Yuan Y., Zhang Y.-X., Manning D.S., Caldwell H.D. 1990; Multiple tandem promotors of the major outer membrane protein gene (omp1) of Chlamydia psittaci.. Infect Immun 58:2850–2855
    [Google Scholar]
  39. Zhang Y.-X., Watkins N.G., Stewart S., Caldwell H.D. 1987; The low-molecular-mass, cysteine-rich outer membrane protein of Chlamydia trachomatis possesses both biovar- and species-specific epitopes.. Infect Immun 55:2570–2573
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-10-2489
Loading
/content/journal/micro/10.1099/13500872-141-10-2489
Loading

Data & Media loading...

Most cited Most Cited RSS feed