The anaerobic parasitic protist was adapted in chemostats to eight different conditions defined by different growth rates and carbon regimes. Glucose or maltose was used as carbon and energy source. Cells cultured under well-defined steady states were tested in short-term experiments. The kinetics of glucose and maltose uptake were determined and their glucokinase and α-glucosidase activities were measured. Uptake in 20 min was measured with radiolabeled glucose and maltose, rather than analogues, using the silicone oil centrifugation technique. Hence, the accumulated label represents both transport and metabolic activity. The total uptake of glucose was highest in organisms that had been starved for glucose during growth. The kinetics of glucose uptake can be understood by assuming rate-limitation by transport across the plasma membrane at low external concentrations and by the subsequent metabolism at concentrations exceeding a cross-over value. The specific glucokinase activity correlated in only four out of eight cases with the saturation uptake. The kinetics of maltose uptake indicated rate-limitation at low maltose concentrations by a diffusion-limited step and at higher levels by metabolic steps. The uptake of maltose was primarily affected by the growth rate during culture, the highest growth rates resulting in most uptake. Maltose uptake was determined only partially by the cellular α-glucosidase activity. The activities of both transport and metabolic enzymes changed due to the culture conditions suggesting that the control over glucose and maltose metabolism is shared by several steps in the pathway.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error