1887

Abstract

A sample of 30 fluorescent pseudomonads isolated from the phyllosphere of sugar beet throughout a single growing season and shown to be closely related on the basis of fatty acid methyl ester (FAME) analysis was subjected to detailed phenotypic and genotypic characterization. Phenotypic traits were assessed on the basis of biochemical properties, assimilation of sole carbon sources, FAME analysis, organic pyrolysate content (MS-pyrolysis), and total cellular protein profiles. With the exception of total cellular protein profiles, numerical analysis of the data revealed two main clusters, each of which was divided into several subclusters. Numerical analysis of total cellular protein data failed to differentiate isolates into two main clusters, but nevertheless grouped isolates into six subclusters. On the basis of biochemical and carbon source assimilation profiles, 19 isolates were identified as biovar V, eight isolates as biovar III and three isolates as pathovar . In general, all methods of phenotypic analysis grouped isolates according to time of sampling and leaf type. Genome analysis was undertaken by pulsed-field gel electrophoresis (PFGE) of l, l, l and l macrorestriction fragments and revealed the presence of eight distinct genomic (clonal) groups. These groups correlated closely with the clusters generated by numerical analysis of phenotypic data, but there was no correlation between macrorestriction fragment profile and isolate identification; in fact the variation in macrorestriction fragment patterns within biovars was as great as the variation detected between biovars, and between and . Statistical evaluation of macrorestriction fragment patterns revealed two examples of recent strain divergence: one was due to the presence of a 400 kbp plasmid within one isolate of a collection of nine otherwise genomically identical isolates, and the other was observed between two phenotypically similar isolates sampled 220 d apart. Genetic variation was expressed in terms of nucleotide diversity (π) and pairwise comparisons yielded values ranging from 0.0029 to 0.1517. The mean intrapopulation genetic variation was high (0.0993), but limited genetic variation was detected among isolates sampled on each occasion. Taken together this suggests a population comprised of a variety of apparently distantly related clones (genomic groups), each adapted to local conditions. Genome sizes were estimated from the sum of l restriction fragments and ranged from 4.2 to 5.5 Mbp. Examination of the distribution of l, l, l and l restriction endonuclease sites showed that the distribution of l sites differed significantly from the expected (random) distribution.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-9-2315
1994-09-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/9/mic-140-9-2315.html?itemId=/content/journal/micro/10.1099/13500872-140-9-2315&mimeType=html&fmt=ahah

References

  1. Arbeit R. D., Arthur M., Dunn R., Kim C., Selander R. K., Goldstein R. 1990; Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology.. J Infect Dis 161:230–235
    [Google Scholar]
  2. Austin B., Goodfellow M., Dickinson C. H. 1978; Numerical taxonomy of phylloplane bacteria isolated from Eolium perenne. J Gen Microbiol 104:139–155
    [Google Scholar]
  3. Ayala F.J. 1982; The genetic structure of species. In Perspectives on Evolution pp. 60–82 Edited by Milkman R. Massachusetts: Sinauer Associates;
    [Google Scholar]
  4. Boccara M., Vadel R., Lalo D., Lebrum M., Fafay J. F. 1991; Genetic diversity and host range in strains of Erwinia chrjsanthemi.. Mol Plant—Alicrobe Interact 4:292–299
    [Google Scholar]
  5. Böe B., Gjerde J. 1980; Fatty acid patterns in the classification of some representatives of the families Enterobacteriaceae and Vibroaceae. J Gen Microbiol 116:41–49
    [Google Scholar]
  6. Böhm H., Karch H. 1992; DNA fingerprinting of Escherichia coli 0157: H7 strains by pulsed-field gel electrophoresis.. J Clin Microbiol 30:2169–2172
    [Google Scholar]
  7. Cook D., Barlow E., Sequeria L. 1989; Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitivity response.. Mol Plant—Microbe Interact 2:113–121
    [Google Scholar]
  8. Cook D., Barlow E., Sequeria L. 1991; DNA probes as tools for the study of host-pathogen evolution: the example of Pseudomonas solanacearum.. In Advances in Molecular Genetics of Plant-Microbe Interactions 1 pp. 103–108 Edited by Hennecke H., Verma D. P. S. . Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  9. Davenport R.R. 1980; Cold-tolerant yeasts and yeast-like organisms. In Biology and Activity of Yeasts pp. 215–230 Edited by Skinner F. A., Passmore S. M. , Davenport R. R. . London: Academic Press;
    [Google Scholar]
  10. Denny T.P. 1988; Phenotypic diversity in Pseudomonas syringae pv. tomato. J Gen Microbiol 134:1939–1948
    [Google Scholar]
  11. Denny T. P., Gilmour M. N., Selander R. K. 1988; Genetic diversity and relationships of two pathovars of Pseudomonas syringae. J Gen Microbiol 134:1949–1960
    [Google Scholar]
  12. Dickinson C.H. 1986; Adaptation of microorganisms to climatic conditions affecting plant surfaces. In Microbiology of the Phyl/ospbere pp. 77–100 Edited by Fokkema N.J., Van Den Heuvel J. Cambridge: Cambridge University Press;
    [Google Scholar]
  13. Ercolani G.L. 1978; Pseudomonas savastanoi and other bacteria colonizing the surface of olive leaves in the field. J Gen Microbiol 109:245–257
    [Google Scholar]
  14. Ercolani G.L. 1983; Variability among isolates of Pseudomonas syringae pv. savastanoi from the phylloplane of the olive. J Gen Microbiol 129:901–916
    [Google Scholar]
  15. Ercolani G.L. 1985; Factor analysis of fluctuation in populations of Pseudomonas syringae pv. savastanoi on the phylloplane of the olive.. Microb Ecol 11:41–49
    [Google Scholar]
  16. Ercolani G.L. 1991; Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb Ecol 21:35–48
    [Google Scholar]
  17. Gillings M., Fahy P. 1993; Genetic diversity of Pseudomonas solanacearum biovars 2 and N2 assessed using restriction endonuclease analysis of total genomic DNA.. Plant Pathol 42:744–753
    [Google Scholar]
  18. Giovannetti L., Venture S., Bazzicalupo M., Fani R., Materassi R. 1990; DNA restriction fingerprint analysis of the soil bacterium Agospirillum.. J Gen Alicrobiol 136:1161–1166
    [Google Scholar]
  19. Goodacre R., Berkeley R. C. W. 1990; Detection of small genotypic changes in Escherichia coli by pyrolysis mass spectrometry.. FEMS Microbiol Lett 71:133–138
    [Google Scholar]
  20. Gower J.C. 1966; Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338
    [Google Scholar]
  21. Grothues D., Tummler B. 1991; New approaches in genome analysis by pulsed-field gel electrophoresis: application to the analysis of Pseudomonas species.. Alol Microbiol 5:2763–2776
    [Google Scholar]
  22. Harrison S. P., Jones D. G., Young J. P. W. 1989; Rhigobmm population genetics: genetic variation within and between populations from diverse locations.. J Gen Alicrobiol 135:1061–1069
    [Google Scholar]
  23. Harsono K. D., Kaspar C. W., Luchansky J. B. 1993; Comparison and genomic sizing of Escherichia coli 0157:H7 isolates by pulsed-field gel electrophoresis.. Appl Environ Microbiol 59:3141–3144
    [Google Scholar]
  24. Hayward A.C. 1991; Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum.. Annu Rev Phytopathollfi68–87
    [Google Scholar]
  25. Hirano S.S., Upper C. D. 1993; Dynamics, spread and persistence of a single genotype of Pseudomonas syringae relative to those of its conspecifics on populations of snap bean leaflets.. Appl Environ Microbiol 59:1082–1091
    [Google Scholar]
  26. Istock C. A., Duncan K. E., Ferguson N., Zhou X. 1992; Sexuality in a natural population of bacteria — Bacillus subtilis challenges the clonal paradigm.. Alol Ecol 1:95–103
    [Google Scholar]
  27. Johnson J.L., Palleroni N. J. 1989; Deoxyribonucleic acid similarities among Pseudomonas species, hit. J Syst Bacteriol 39:230–235
    [Google Scholar]
  28. Laemmli U.K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680 –685
    [Google Scholar]
  29. Leach J. E., Rhoads M. L., Vera Cruz C. M., White F. F., Mew T. W., Leung H. 1992; Assessment of genetic diversity and population structure of Xanthomonas orygae pv. oryzae with a repetitive DNA element.. Appl Environ Alicrobiol 58:2188–2195
    [Google Scholar]
  30. Lenski R.E. 1993; Assessing the genetic structure of microbial populations. Proc Natl Acad Sci USA 90:4334–4336
    [Google Scholar]
  31. Lilley A. K., Fry J. C., Day M. J., Bailey M. J. 1994; In situ transfer of exogenously isolated plasmid between Pseudomonas spp. in sugar beet rhizosphere.. Microbiology 140:27–33
    [Google Scholar]
  32. Lindow S.E. 1993; Novel method for identifying bacterial mutants with reduced epiphytic fitness. Appl Environ Alicrobiol 59:1586–1592
    [Google Scholar]
  33. Masters C. I., Murray R. G. E., Moseley B. E. B., Minton K. W. 1991; DNA polymorphisms in new isolates of Deinococcus radiopugnans.. J Gen Alicrobiol 137:1459–1469
    [Google Scholar]
  34. Maynard Smith J., Smith N. H., O'Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proc Natl Acad Sci USA 90:4384–4388
    [Google Scholar]
  35. McArthur J. V., Kovacic D. A., Smith M. H. 1988; Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci USA 85:9621–9624
    [Google Scholar]
  36. McClelland M., Hanish J., Nelson M., Patel Y. 1988; KGB: a single buffer for all restriction nucleases. Nucleic Acids Res 16:364
    [Google Scholar]
  37. Mew T.W., Kennedy B. W. 1982; Seasonal variation in populations of pathogenic pseudomonads on soybean leaves. Phytopathology 72:103–105
    [Google Scholar]
  38. Miller L., Berger T. 1985 Bacterial identification by gas chromatography of whole cell fatty acids. Hewlett-Packard application note 228-241 Avondale, PA: Hewlett-Packard Co;
    [Google Scholar]
  39. Mogen B. D., Olson H. R., Sparks R. B., Gudmestad N. C., Oleson A. E. 1990; Genetic variation in strains of Clavibacter michiganense subsp. sepedonicum: polymorphisms in restriction fragments containing a highly repeated sequence.. Phytopathology 80:90–96
    [Google Scholar]
  40. Morgan H.R., Beckwith T. D. 1939; Mucoid dissociation in the colon-typhoid-Salmonella group.. J Infect Dis 65:113–124
    [Google Scholar]
  41. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33
    [Google Scholar]
  42. Nei M., Li W.-H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273
    [Google Scholar]
  43. Orr K., Gould F. K., Sisson P. R., Lightfoot N. F., Freeman R., Burdess D. 1991; Rapid inter-strain comparison by pyrolysis mass spectrometry in nosocomial infection with Xanthomonas maltophilia.. J Hosp Infect 17:187–195
    [Google Scholar]
  44. O'Sullivan D.B., O'Gara F. 1992; Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676
    [Google Scholar]
  45. Palleroni N.J. 1984; Family I. Pseudomonadaceae.. In Bergey’s Manual of Systematic Bacteriology 1 pp. 140–218 Edited by Krieg N.R., Holt J.G. Baltimore: Williams and Wilkins;
    [Google Scholar]
  46. Palleroni N.J. 1986; Taxonomy of Pseudomonads.. In The Bacteria 10 pp. 3–25 Edited by Gunsalus I.C. Orlando, FL: Academic Press;
    [Google Scholar]
  47. Palleroni N.J., Doudoroff M. 1972; Some properties and taxonomic subdivisions of the genus Pseudomonas.. Annu Rev Phytopathnl 10:73–100
    [Google Scholar]
  48. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas.. Int J Syst Bacteriol 23:333–339
    [Google Scholar]
  49. Rainey P. B., Brodey C. L., Johnstone K. 1993a; A gene cluster encoding three high molecular weight proteins is required for synthesis of tolaasin by the mushroom pathogen Pseudomonas tolaasii. Mol Microbiol 8:643–652
    [Google Scholar]
  50. Rainey P.B., Moxon E. R., Thompson I. P. 1993b; Intraclonal polymorphism in bacteria. Adv Microb Ecol 13:263–300
    [Google Scholar]
  51. Rainey P. B., Thompson I. P., Palleroni N. J. 1994; Genome and fattv acid analysis of Pseudomonas stutgeri.. Int J Syst Bacteriol 44:54–61
    [Google Scholar]
  52. Pinero D., Martinez E., Selander R. K. 1988; Genetic diversity and relationships among isolates of Rhigobium leguminosarum biovar phaseoli. Appl Environ Microbiol 54:2825–2832
    [Google Scholar]
  53. Robertson E.B., Firestone M. K. 1992; Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp.. Appl Environ Microbiol 58:1284–1291
    [Google Scholar]
  54. Saeger J.L., Hale A. B. 1993; Genetic variation within a lotic population of Janthinobacterium lividum. Appl Environ Microbiol 59:2214–2219
    [Google Scholar]
  55. Seal S. E., Jackson L. A., Young J. P. W., Daniels M. J. 1993; Differe ntiation of Pseudomonas solanacearum, P. sypygii, P. pickettii and the blood disease bacterium by partial 16S rRNA sequencing: construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. J Gen Microbiol 139:1587–1594
    [Google Scholar]
  56. Sneath P.H.A., Sokal R. R. 1973 Numerical Taxonomy: the Principles and Practice of Numerical Classification. San Francisco: W. FI. Freeman;
    [Google Scholar]
  57. Souza V., Nguyen T. T., Hudson R. R., Pinero D., Lenski R. E. 1992; Hierarchical analysis of linkage disequilibrium in Rhipobium populations: evidence for sex?. Proc Natl Acad Sci USA 89:8389–8393
    [Google Scholar]
  58. Suwanto A., Kaplan S. 1989; Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization. J Bacteriol 171:5840–5849
    [Google Scholar]
  59. Thompson I. P., Bailey M. J., Fenlon J. S., Fermor T. R., Lilley A. K., Lynch J. M., McCormack P. J., McQuilken M. P., Purdy K. P., Rainey P. B., Whipps J. M. 1993a; Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris).. Plant Soil 150:177–191
    [Google Scholar]
  60. Thompson I. P., Bailey M. J., Ellis R. J., Purdy K. J. 1993b; Subgrouping of bacterial populations by cellular fatty acid composition. FEMS Microbiol Ecol 102:75–84
    [Google Scholar]
  61. Van Outryve M. F., Gossle F., Swings J. 1989; The bacterial microflora of witloof chicory (Cichorium intybus L. foliosum Hegi) leaves.. Microb Ecol 18:175–186
    [Google Scholar]
  62. Wheatcroft R., Williams P. A. 1981; Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. J Gen Microbiol 124:433–437
    [Google Scholar]
  63. Wilson M., Lindow S. E. 1993; Effect of phenotypic plasticity on epiphytic survival and colonization by Pseudomonas syringae. Appl Environ Microbiol 59:410–416
    [Google Scholar]
  64. Woese C.R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  65. Xu G.W., Gross D. C. 1988; Physical and functional analysis of the syr A and syr B genes involved in syringomycin production by Pseudomonas syringae pv. syringae. J Bacteriol 170:617–622
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-9-2315
Loading
/content/journal/micro/10.1099/13500872-140-9-2315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error