1887

Abstract

Within the framework of an international project on the sequencing of the whole genome, a 15 kb chromosome segment, which contains the operon involved in inositol utilization, has been cloned and sequenced. This region (14974 bp) contains 12 complete open reading frames (ORFs; genes) and two partial ones; the seventh gene () is the gene encoding inositol dehydrogenase. All the genes identified are transcribed in the same direction as that of the movement of the replication fork. A homology search for their products deduced from the 12 complete ORFs revealed that eight of them exhibit significant homology to known proteins such as fructokinase, acetolactate synthase, fructose-1,6-bisphosphate aldolase (), and PhoB and FtsE proteins (). It also implied that two genes ( and ) might encode a set of two-component regulatory proteins and that the gene might encode a protein belonging to the ATP-binding cassette (ABC) family. Based on the features of the nucleotide sequence determined and the results of the homology search, the primary structure of the operon is predicted.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-9-2289
1994-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/9/mic-140-9-2289.html?itemId=/content/journal/micro/10.1099/13500872-140-9-2289&mimeType=html&fmt=ahah

References

  1. Anderson W.A., Magasanik B. 1971; The pathway of myoinositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-D-gluconic acid to glycolytic intermediates. J Biol Chem 246:5662–5675
    [Google Scholar]
  2. Arico B., Miller J. F., Roy C., Stibitz S., Monack D., Falkow S., Gross R., Rappouli R. 1989; Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA 86:6671–6675
    [Google Scholar]
  3. Benton W.D., Davis R. W. 1977; Screening Agt recombinant clones by hybridization to single plaques in situ. Science 196:180–182
    [Google Scholar]
  4. Berman T., Magasanik B. 1966; The pathway of wyo-inositol degradation in Aerobacter aerogenes. Dehydrogenation and dehydration. J Biol Chem 241:800–806
    [Google Scholar]
  5. Comeau D. E., Ikenaka K., Tsung K., Inouye M. 1985; Primary characterization of the protein products of the Escherichia coli omp B locus: structure and regulation of synthesis of the Omp R and Env Z proteins. J Bacteriol 164:578–584
    [Google Scholar]
  6. Falco S. C., Dumas K. S., Livak K. J. 1985; Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase. Nucleic Acids Res 13:4011–4027
    [Google Scholar]
  7. Fujita Y., Freese E. 1981; Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase. J Bacteriol 145:760–767
    [Google Scholar]
  8. Fujita Y., Fujita T. 1983; Genetic analysis of a pleiotropic deletion mutant (Δigf) in Bacillus subtilis. J Bacteriol 154:864–869
    [Google Scholar]
  9. Fujita Y., Shindo K., Miwa Y., Yoshida K. 1991; Bacillus subtilis inositol dehydrogenase-encoding gene {idh): sequence and expression in Escherichia coli. Gene 108:121–125
    [Google Scholar]
  10. Gibson T. W., Gill D. R., Salmond G. P. C. 1992; Localized mutagenesis of the fts YEX operon: conditionally lethal missense substitutions in the Fts E cell division protein of Escherichia coli are similar to those found in the cystic fibrosis transmembrane conductance regulator protein (CFTR) of human patients. Mol and Gen Genet 234:121–128
    [Google Scholar]
  11. Gibson J. L., Falcone D. L., Tabita F. R. 1991; Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the form I CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem 266:14646–14653
    [Google Scholar]
  12. Gill D. R., Hatfull G. F., Salmond G. P. C. 1986; A new cell division operon in Escherichia coli.. Mol and Gen Genet 205:134–145
    [Google Scholar]
  13. Glaser P., Kunst F., Arnaud M., Coudart M.-P., Gonzales W., Hullo M.-F., Lonescu M., Lubochinsky B., Marcelino L., Moszer I., Presecan E., Santana M., Schneider E., Schweizer J., Vertes A., Rapoport G., Danchin A. 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol Microbiol 10:371–384
    [Google Scholar]
  14. Higgins C. F., Hyde S. C., Mimmack M. M., Gileadi U., Gill D R., Gallagher M. P. 1990; Binding protein-dependent transport systems. J Bioenerg Biomembr 22:571–592
    [Google Scholar]
  15. Itaya M., Tanaka T. 1991; Complete physical map of the Bacillus subtilis 168 chromosome constructed by a gene-directed mutagenesis method. J Mol Biol 220:631–648
    [Google Scholar]
  16. Kohara Y., Akiyama K., Isono K. 1987; The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508
    [Google Scholar]
  17. Makino K., Shinagawa H., Amemura M., Nakata A. 1986; Nucleotide sequence of the pho B gene, the positive regulatory gene for the phosphate regulon of Escherichia coli. J Mol Biol 190:37–44
    [Google Scholar]
  18. Mansouri K., Piepersberg W. 1991; Genetics of streptomycin production in Streptomyces griseus: nucleotide sequence of five genes, str FGHIK including a phosphatase gene. Mol and Gen Genet 228:459–469
    [Google Scholar]
  19. Mitchell C., Morris P. W., Lum L., Spiegelman G., Vary J. C. 1992; The amino acid sequence of a Bacillus subtilis phosphoprotein that matches an orf Y-tsr coding sequence. Mol Microbiol 6:1345–1349
    [Google Scholar]
  20. Pearson W.R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448
    [Google Scholar]
  21. Smith S. B., Taylor M. A., Burch L. R., Davies H. V. 1993; Primary structure and characterization of a cDNA clone of fructokinase from potato (Solanum tuberosum L. CV Record). Plant Physiol 102:1043
    [Google Scholar]
  22. Southern E.M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
    [Google Scholar]
  23. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  24. Sukhodolets V. V., Flyakh Y. V., Rumyantseva E. V. 1983; Mapping of mutations in genes for nucleoside catabolism on the Bacillus subtilis chromosome.. Genetika 19:221–226
    [Google Scholar]
  25. Trach K., Chapman J. W., Piggot P., Lecoq D., Hoch J. A. 1988; Complete sequence and transcriptional analysis of the spo OF region of the Bacillus subtilis chromosome. J Bacteriol 170:4194–4208
    [Google Scholar]
  26. Yoshida H., Bogaki M., Nakamura S., Ubukata K., Konno M. 1990; Nucleotide sequence and characterization of the Staphylococcus aureus nor A gene, which confers resistance to quinolones. J Bacteriol 172:6942–6949
    [Google Scholar]
  27. Zeigler D.R., Dean D. H. 1990; Orientation of genes in the Bacillus subtilis chromosome. Genetics 125:703–708
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-9-2289
Loading
/content/journal/micro/10.1099/13500872-140-9-2289
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error