1887

Abstract

The gene of encoding glutamine synthetase (GS) has been cloned and sequenced. Molecular analysis revealed that there is a gene upstream of , in a single operon. A putative -type promoter sequence, a consensus gene product binding site and a consensus upstream activator sequence were detected upstream of the gene. The deduced amino acid sequences of the GS and GlnB proteins of showed strong homology with the same proteins from other Gram-negative bacteria. The sequence of the gene isolated from glutamine auxotroph Gln83 was also determined. The 83 mutation was shown to result in premature termination of GS synthesis and formation of a 17 kDa C-truncated GS which could be complemented by a 5′-truncated gene which encodes a 30 kDa N-truncated GS. This phenomenon is characteristic for interallelic complementation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-2143
1994-08-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-2143.html?itemId=/content/journal/micro/10.1099/13500872-140-8-2143&mimeType=html&fmt=ahah

References

  1. Adler H.I., Fisher W.D., Cohen A., Hardigree A.A. Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci USA 1967; 57:321–326
    [Google Scholar]
  2. Aliibert P., Willison J.C., Vignais P.M. Complementation of nitrogen-regulatory (ntr-like) mutations in Rhodobacter capsulatus by an Escherichia coli gene: cloning and sequencing of the gene and characterization of the gene product. J Bacteriol 1987; 169:260–271
    [Google Scholar]
  3. Almassy R.J., Janson C.A., Hamlin R., Xuong N.-H., Eisenberg D. Novel subunit-subunit interaction in the structure of glutamine synthetase. Nature 1986; 323:304–309
    [Google Scholar]
  4. Bolivar F. Construction and characterization of new cloning vehicles III Derivatives of plasmid pBR322 carrying unique EcoRl sites for selection of EroRI generated recombinant molecules. Gene 1978; 4:121–136
    [Google Scholar]
  5. Buck M., Cannon W., Woodcock J. Transcriptional activation of the Klebsiella pneumoniae nitrogenase promoter may involve DNA loop formation. Mol Microbiol 1987; 1:243–249
    [Google Scholar]
  6. Caballero F.J., Cejudo F.J., Florencio F.J., Cardenas J., Castillo F. Molecular and regulatory properties of glutamine synthetase from the phototrophic bacterium Rhodo-pseudomonas capsulata E1F1. J Bacteriol 1985; 162:804–809
    [Google Scholar]
  7. Cannon W., Charlton W., Buck M. Organization and function of binding sites for the transcriptional activator Nif A in Klebsiella pneumoniae nifE and nifU promoters. J Mol Biol 1991; 220:915–931
    [Google Scholar]
  8. Carlson T.A., Guierinot M.L., Chelm B.K. Characterization of the gene encoding glutamine synthetase I {glnA) from Bradyrhizobium japonicum. J Bacteriol 1985; 162:698–703
    [Google Scholar]
  9. Castilho B.A., Olfson P., Casadaban M. Plasmid insertion mutagenesis and lac gene fusion with mini-Mu bacteriophage transposons. J Bacteriol 1984; 158:488–495
    [Google Scholar]
  10. Colonna-Romano S., Riccio A., Guida M., Defez R., Lamberti A., Laccarino M., Arnold W., Priefer U., Piihler A. Tight linkage of glnA and a putative regulatory gene in Rhizobium leguminosartlm. Ntldeic Acids Res 1987; 15:1951–1964
    [Google Scholar]
  11. Dautry-Varsat A., Cohen G.N., Stadtman E.R. Some properties of Escherichia coli glutamine synthetase after limited proteolysis by subtilisin. J Biol Chem 1979; 254:3124–3128
    [Google Scholar]
  12. Dixon R. Tandem promoters determine regulation of the Klebsiella pneumoniae glutamine synthetase (glnA) gene. Nucleic Acids Res 1984; 12:7811–7830
    [Google Scholar]
  13. Dubeikovsky A.N., Kameneva S.V. Inheritance of hybrid plasmid pAS8-121 in cells of the purple nitrogen fixing phototrophic bacterium Rhodopseudomonas sphaeroides. Genetika 1984; 20:1783–1791 (in Russian)
    [Google Scholar]
  14. Engelhardt H., Klemme J.-H. Purification and structural properties of adenylylated and deadenylylated glutamine synthetase from Rhodopseudomonas sphaeroides. Arch Microbiol 1982; 133:202–205
    [Google Scholar]
  15. Gussin G.N., Ronson C.W., Ausubel F.M. Regulation of nitrogen fixation genes. Annu Rev Genet 1986; 20:567–591
    [Google Scholar]
  16. Hawkes T., Merrick M., Dixon R. Interaction of purified NtrC protein with nitrogen regulated promoters from Klebsiella pneumoniae. Mol & Gen Genet 1985; 201:492–498
    [Google Scholar]
  17. Hohn B. In vitro packaging of X and cosmid DNA. Methods Enzymol 1979; 68:299–309
    [Google Scholar]
  18. Johansson B.C., Gest H. Inorganic nitrogen assimilation by the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol 1976; 128:683–688
    [Google Scholar]
  19. Kranz R.G., Page V.M., Caldicott I.M. Inactivation, sequence and lacZ-fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capsulatus. J Bacteriol 1990; 172:53–62
    [Google Scholar]
  20. Lei M., Aebi U., Heidner E.G., Eisenberg D. Limited proteolysis of glutamine synthetase is inhibited by glutamate and feedback inhibitors. J Biol Chem 1979; 254:3129–3124
    [Google Scholar]
  21. Leonardo J.M., Goldberg R.B. Regulation of nitrogen metabolism in glutamine auxotrophs of Klebsiella pneumoniae. J Bacteriol 1980; 142:99–110
    [Google Scholar]
  22. Loenen W.A., Brammar W.Y. A bacteriophage lambda vector for cloning large DNA fragments made with several restriction enzymes. Gene 1980; 10:249–259
    [Google Scholar]
  23. Magasanik B. Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet 1982; 16:135–168
    [Google Scholar]
  24. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: a Laboratory Manual 1982 Cold Spring Harbor, NY: Cold Spring Harbor;
    [Google Scholar]
  25. Marmur J., Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol 1962; Biol5:109–118
    [Google Scholar]
  26. Miller J.H. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Ormerod J.G., Ormerod K.S., Gest H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys 1961; 94:449–463
    [Google Scholar]
  28. Pahel G., Rothstein D.M., Magasanik B. Complex glnA-glnE-glnG operon of Escherichia coli. J Bacteriol 1982; 150:202–213
    [Google Scholar]
  29. Preker P., Hubner P., Schmehl M., Klipp W., Bickle T.A. Mapping and characterization of the promoter elements in the regulatory nif genes rpoN, nifA1 and nifA2 in Rhodobacter capstllatus. Mol h4icrobiol 1992; 6:1035–1047
    [Google Scholar]
  30. Reitzer L.J., Magasanik B. Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci USA 1985; 82:1979–1983
    [Google Scholar]
  31. Saano A.K., Zinchenko V.V. A new IncQ plasmid R89S: properties and genetic organization. Plasmid 1987; 17:191–201
    [Google Scholar]
  32. Sakhno O.N., Ivanovskii R.N., Kondrateva E.N. The glutamine synthetase-glutamate synthase system in Rhodopseudomonas sphaeroides. Microbiologiya 1981; 50:607–612
    [Google Scholar]
  33. Scholz P., Haring V., Wittmann-Liebold B., Ashman K., Bagdasarian M., Scherzinger E. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 1989; 75:271–288
    [Google Scholar]
  34. Scolnik P.A., Virosco J., Haselkorn R. The wild-type gene for glutamine synthetase restores ammonia control of nitrogen fixation to Gin (glnA) mutants of Rhodopseudomonas capsulata. J Bacteriol 1983; 155:180–185
    [Google Scholar]
  35. Shapiro B.M., Stadtman E.R. Glutamine synthetase (Escherichia coli). Methods Enzymol 1970; 17A:910–922
    [Google Scholar]
  36. Shestakov S., Zinchenko V., Babykin M., Kopteva A., Kameneva S., Frolova V., Shestopalov V., Bondarenko O. Genetic studies on the regulation of nitrogen fixation in Rhodobacter sphaeroides. In Nitrogen Fixation: 100 Years After. Proceedings of the 7th International Congress on Nitrogen Fixation 1988 Edited by Bothe H., de Bruijn F.J., Newton W.E. Stuttgart & New York: Fischer; pp 163–169
    [Google Scholar]
  37. Son H.S., Rhee S.G. Cascade control of Escherichia coli glutamine synthetase. Purification and properties of Pn protein and nucleotide sequence of its structural gene. J Biol Chem 1987; 262:8690–8695
    [Google Scholar]
  38. Turner N.E., Robinson S.J., Haselkorn R. Different promoters for the Anabaena glutamine synthetase gene during growth using molecular or fixed nitrogen. Nature 1983; 306:337–342
    [Google Scholar]
  39. Willison J.C., Vignais P.M. The use of metronidazole to isolate Nif-mutants of Rhodopseudomonas capsulata and the identification of a mutant with altered regulatory properties of nitrogenase. J Gen Microbiol 1982; 128:3001–3010
    [Google Scholar]
  40. De Zamaroczy M., Delorme F., Elmerich C. Characterization of three different nitrogen-regulated promoter regions for the expression of glnB znglnA in Azospirillum brasilense. Mol & Gen Genet 1990; 224:421–430
    [Google Scholar]
  41. Zinchenko V.V., Babykin M.M., Shestakov S.V. Mobilization of non-conjugative plasmids into Rhodopseudomonas sphaeroides. J Gen Microbiol 1984; 130:1587–1590
    [Google Scholar]
  42. Zinchenko V., Saano A., Babykin M., Kopteva A., Shestakov S. Gene cloning vectors for Rhodopseudomonas sphaeroides. In Abstracts of Vth International Symposium on Photosynthetic Prokaryotes 1985 Switzerland: Gridelwald; p 371
    [Google Scholar]
  43. Zinchenko V.V., Kopteva A.V., Belavina N.V., Mitronova T.N., Frolova V.D., Shestakov S.V. The study of Rhodobacter sphaeroides mutants of different type with derepressed nitrogenase. Genetika 1991; 27:991–999 (in Russian)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-8-2143
Loading
/content/journal/micro/10.1099/13500872-140-8-2143
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error