1887

Abstract

The 60 kDa cysteine-rich proteins (CrPs) of Chlamydia are developmentally regulated outer envelope proteins synthesized late in the chlamydial growth cycle. These proteins, found only on the extracellular infectious elementary bodies, elicit major antibody responses in chlamydial infection. We have cloned and expressed in the complete 60 kDa CrP genes from and The recombinant products were expressed as either ‘native’ proteins or as fusions with the bacteriophage T7 gene 10 protein. Electron microscopy showed that recombinant proteins were produced as insoluble inclusions within the host cells. The recombinant 60 kDa CrPs were purified and used to raise high titre polyclonal antisera. In immunoblot analysis these antisera reacted with the 60 kDa CrPs from purified elementary bodies of all three chlamydial species in a genus-specific manner. Further molecular analysis allowed the genus-specific cross-reacting epitopes to be localized by using overlapping synthetic peptides covering the 60 kDa CrP. Immunogold labelling experiments using purified infectious elementary bodies from the three chlamydial species indicated that the 60 kDa CrPs are not surface accessible to antibody binding.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-2003
1994-08-01
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-2003.html?itemId=/content/journal/micro/10.1099/13500872-140-8-2003&mimeType=html&fmt=ahah

References

  1. Allen J.E., Stephens R.S. Identification by sequence analysis of two-site posttranslational processing of the cysteine-rich outer membrane protein 2 of Chlamydia trachomatis serovar L2. J bacteriol 1989; 171:285–291
    [Google Scholar]
  2. Batteiger B.E., Rank R.G. Analysis of the humoral immune response to chlamydial genital infection in guinea pigs. Infect lmmun 1987; 55:1767–1777
    [Google Scholar]
  3. Batteiger B.E., Newhall W.J.V., Jones R.B. Differences in outer membrane proteins of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis. Infect lmmun 1985; 50:480–494
    [Google Scholar]
  4. Bavoil P., Ohlin A., Schachter J. Role of disulphide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect lmmun 1984; 44:479–485
    [Google Scholar]
  5. Brunham R.C., Peeling R., MacLean I., MacDowell J., Persson K., Osser S. Postabortal Chlamydia trachomatis salpingitis: correlating risk with antigen-specific serological responses and with neutralization. J Infect Dis 1987; 155:749–755
    [Google Scholar]
  6. Carter M.W., Al-Mahdawi S.A., H. Giles I.G., Treharne J.D., Ward M.E., Clarke I.N. Nucleotide sequence and taxonomic value of the major outer membrane protein of Chlamydia pneumoniae IOL-207. J Gen Microbiol 1991; 137:465–475
    [Google Scholar]
  7. Clarke I.N., Lambden P.R. Stable cloning of the amino terminus of the 60 kDa outer membrane protein of Chlamydia trachomatis serovar LI. FEMS Microbiol Lett 1988; 51:81–86
    [Google Scholar]
  8. Clarke I.N., Ward M.E., Lambden P.R. Molecular cloning and sequence analysis of a developmentally regulated cysteine-rich outer membrane protein from Chlamydia trachomatis. Gene 1988; 71:307–314
    [Google Scholar]
  9. Coles A.M., Allan I., Pearce J.H. The nucleotide and derived amino acid sequence of the omp2 gene of C. trachomatis serovar E. Nucleic Acids Res 1990; 18:6713
    [Google Scholar]
  10. Collett B.A., Newhall W.J.V., Jersild R.A. Jr, Jones R.B. Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy. J Gen Microbiol 1989; 135:85–94
    [Google Scholar]
  11. Conlan J.W., Ferris S., Clarke I.N., Ward M.E. Surface exposed epitopes on the major outer-membrane protein of Chlamydia trachomatis defined with peptide antisera. J Gen Microbiol 1989; 135:3219–3228
    [Google Scholar]
  12. Conlan J.W., Ferris S., Clarke I.N., Ward M.E. Isolation of recombinant fragments of the major outer-membrane protein of Chlamydia trachomatis-, their potential as subunit vaccines. J Gen Microbiol 1990; 136:2013–2020
    [Google Scholar]
  13. De La Maza L.M., Fielder T.J., Carlson E.J., Markoff B.A., Peterson E.M. Sequence diversity of the 60-kilodalton protein and of a putative 15-kilodalton protein between the trachoma and lymphogranuloma venereum biovars of Chlamydia trachomatis. Infect Immun 1991; 59:1196–1201
    [Google Scholar]
  14. Everett K.D.E., Hatch T.P. Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC. J Bacteriol 1991; 173:3821–3830
    [Google Scholar]
  15. Fitch W.M., Peterson E.M., De La Maza L.M. Phylogenetic analysis of the outer-membrane-protein genes of Chlamydiae, and its implications for vaccine development. Mol Biol Evol 1993; 10:892–913
    [Google Scholar]
  16. Geysen H.M., Rodda S.J., Mason T.J., Tribbick G., Schoofs P.G. Strategies for epitope analysis using peptide synthesis. J Immunol Methods 1987; 102:259–274
    [Google Scholar]
  17. Hatch T.P., Allan I., Pearce J.H. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J Bacteriol 1984; 157:13–20
    [Google Scholar]
  18. Hatch T.P., Miceli M., Sublett J. Synthesis of disulphide-bonded outermembrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J Bacteriol 1986; 165:379–385
    [Google Scholar]
  19. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157:105–132
    [Google Scholar]
  20. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  21. Lambden P.R., Everson J.S., Ward M.E., Clarke I.N. Sulfur-rich proteins of Chlamydia trachomatis-, developmentally regulated transcription of polycistronic mRNA from tandem promoters. Gene 1990; 87:105–112
    [Google Scholar]
  22. Melgosa M.P., Kuo C.-C., Campbell L.A. Outer membrane complex proteins of Chlamydia pneumoniae. FEMS Microbiol Eett 1993; 112:199–204
    [Google Scholar]
  23. Newhall W.J.V., Batteiger B., Jones R.B. Analysis of the human serological response to proteins of Chlamydia trachomatis. Infect Immun 1982; 38:1181–1189
    [Google Scholar]
  24. Newhall W.J.V., Basinski M.B. Purification and structural characterization of chlamydial outer membrane proteins. In Chlamydial Infections 1986 Edited by Oriel D., Ridgway G.L., Schachter J., Taylor-Robinson D., Ward M.E. Cambridge: Cambridge University Press; Proceedings of the 6th International Symposium on Human Chlamydial Infections, pp 93–96
    [Google Scholar]
  25. Osborn M.J., Munson R. Separation of the inner (cytoplasmic) and outer membranes of Gram-negative bacteria. Methods Enzymol 1974; 31:642–653
    [Google Scholar]
  26. Peterson E.M., Markoff B.A., De La Maza L.M. Characterization of a neutralizing, species specific epitope of the MOMP of Chlamydia trachomatis. In Chlamydial Infections Proceedings of the 7th International Symposium on Human Chlamydial Infections 1990 Edited by Bowie W.R., Caldwell H.D., Jones R.P., Mardh P., Ridgway G.L., Schachter J., Stamm W.E., Ward M.E. Cambridge: Cambridge University Press; pp 77–80
    [Google Scholar]
  27. Pickett M.A., Everson J.S., Clarke I.N. Chlamydia psittaci ewe abortion agent: complete nucleotide sequence of the major outer membrane protein gene. FEMS Microbiol Eett 1988; 55:229–234
    [Google Scholar]
  28. Salari S.H., Ward M.E. Polypeptide composition of Chlamydia trachomatis. J Gen Microbiol 1981; 123:197–207
    [Google Scholar]
  29. Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150:76–85
    [Google Scholar]
  30. Studier F.W., Moffatt B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1989; 189:113–130
    [Google Scholar]
  31. Wagar E.A., Schachter J., Bavoil P., Stephens R.S. Differential human serological response to two 60, 000 molecular weight Chlamydia trachomatis antigens. J Infect Dis 1990; 162:922–927
    [Google Scholar]
  32. Watson M.W., Lambden P.R., Ward M.E., Clarke I.N. Chlamydia trachomatis 60 kDa cysteine rich outer membrane protein: sequence homology between trachoma and LGV biovars. FEMS Microbiol Eett 1989; 65:293–298
    [Google Scholar]
  33. Watson M.W., Lambden P.R., Clarke I.N. The nucleotide sequence of the 60 kDa cysteine rich outer membrane protein of Chlamydia psittaci strain EAE/A22/M. Nucleic Acids Res 1990a; 18:5300
    [Google Scholar]
  34. Watson M.W., Al-Mahdawi S., Lambden P.R., Clarke I.N. The nucleotide sequence of the 60 kDa cysteine rich outer membrane protein of Chlamydia pneumoniae strain IOL-207. Nucleic Acids Res 1990b; 18:5299
    [Google Scholar]
  35. Zhang Y.-X., Stewart S.J., Caldwell H.D. Protective monoclonal antibodies to Chlamydia trachomatis serovar-and serogroup-specific major outer membrane protein determinants. Infect Immun 1989; 57:636–638
    [Google Scholar]
/content/journal/micro/10.1099/13500872-140-8-2003
Loading
/content/journal/micro/10.1099/13500872-140-8-2003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error