1887

Abstract

To test for genotypic variations between different isolates of , the causative agent of leprosy, the 282 bp spacer region between the 16S and 23S rRNA genes was amplified using PCR, and submitted to single-strand conformation polymorphism (SSCP) analysis. The procedure was optimized using four modified spacer fragments, containing mutations at one, three, four and six positions, respectively. Seventy-five isolates from different sources, including isolates from leprosy patients, healthy individuals, armadillos and mouse footpads were identical in the SSCP analysis. DNA sequencing and restriction enzyme analysis performed on four and 40 samples, respectively, confirmed the results obtained with SSCP analysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-1983
1994-08-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-1983.html?itemId=/content/journal/micro/10.1099/13500872-140-8-1983&mimeType=html&fmt=ahah

References

  1. Barry T., Colleran G., Glennon M., Dunican L.K., Gannon F. The 16S/23S ribosomal spacer region as target for DNA probes to identify eubacteria. PCR Methods Appl 1991; 1:51–56
    [Google Scholar]
  2. Clark-Curtiss J.E., Walsh G.P. Conservation of genomic sequences among isolates of Mycobacterium leprae. J Bacteriol 1989; 171:4844–4851
    [Google Scholar]
  3. Dockhorn-Dworniczak B., Dworniczak B., Brommelkamp L., Bulles J., Horst J., Bocker W.W. Non-isotopic detection of single strand conformation polymorphism: a rapid and sensitive technique in diagnosis of phenylketonuria. Nucleic Acids Res 1991; 19:2500
    [Google Scholar]
  4. Don R.H., Cox P.T., Wainwright B.J., Baker K., Mattick J.S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Rm 1991; 19:4008
    [Google Scholar]
  5. Fine P.E.M. Leprosy, the epidemiology of a slow bacterium. Epidemiol Rev 1982; 4:161–188
    [Google Scholar]
  6. Giirtler V. Typing of Clostridium difficile strains by PCR-amplification of variable length 16S-23S rDNA spacer regions. J Gen Microbiol 1993; 139:3089–3097
    [Google Scholar]
  7. Haas W.H., Butler W.R., Woodley C.L., Crawford J.T. Mixed-linker polymerase chain reaction: a new method for rapid fingerprinting of isolates of the Mycobacterium tuberculosis complex. J Clin Microbiol 1993; 31:1293–1298
    [Google Scholar]
  8. Hartskeerl R.A., De Wit M.Y.L., Klatser P.K. Polymerase chain reaction for the detection of Mycobacterium leprae. J Gen Microbiol 1989; 135:2357–2364
    [Google Scholar]
  9. Hayashi K., Yandell D.W. How sensitive is PCR-SSCP. Human Mutation 1993; 2:338–346
    [Google Scholar]
  10. Higuchi R. Recombinant PCR. In PCR Protocols: A Guide to Methods and Applications 1990 Edited by Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. New York: Academic Press; pp 177–183
    [Google Scholar]
  11. Honore N., Cole S.T. Molecular basis of rifampicin resistance in Mycobacterium leprae. Antimicrob Agents Chemother 1993; 37:414–418
    [Google Scholar]
  12. Ji Y., Colston M.J., Cox R.A. Nucleotide sequence and secondary structures of precursor 16S rRNA of slow-growing mycobacteria. Microbiology 1994; 140:123–132
    [Google Scholar]
  13. Klatser P.K., Van Beers S., Madjid B., Day R., De Wit M.Y.L. Detection of Mycobacterium leprae nasal carriers in populations for which leprosy is endemic. J Clin Microbiol 1993; 31:2947–2951
    [Google Scholar]
  14. Liesack W., Pitulle C., Sela S., Stackebrandt E. Nucleotide sequence of the 16S rRNA from Mycobacterium leprae. Nucleic Acids Res 1990a; 18:5558
    [Google Scholar]
  15. Liesack W., Pitulle C., Stackebrandt E. Development of a highly specific diagnostic 23S rDNA oligonucleotide probe for Mycobacterium leprae. Lett Appl Microbiol 1990b; 11:96–99
    [Google Scholar]
  16. Liesack W., Sela S., Bercovier H., Pitulle C., Stackebrandt E. Complete nucleotide sequence of the Mycobacterium leprae 23S and 5S rRNA genes plus flanking regions and their potential in designing diagnostic oligonucleotide probes. FEBS Lett 1991; 281:114–118
    [Google Scholar]
  17. McLaughlin G.L., Howe D.K., Biggs D.R., Smith A.R., Ludwinski P., Fox B.C., Tripathy N., Frasch G.E., Wenger J.D., Carey R.B., Hassan-King M., Vodkin H. Amplification of rDNA loci to detect and type Neisseria meningitidis and other eubacteria. Mol Cell Probes 1993; 7:7–17
    [Google Scholar]
  18. Matar G.M., Swaminathan B., Hunter S.B., Slater L.N., Welch D.F. Polymerase chain reaction-based Restriction Fragment Length Polymorphism analysis of a fragment of the ribosomal operon from Rochalimaea species for subtyping. J Clin Microbiol 1993; 31:1730–1734
    [Google Scholar]
  19. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya K. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 1989a; 86:2766–2770
    [Google Scholar]
  20. Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989b; 5:874–879
    [Google Scholar]
  21. Ridley D.S. Skin biopsy in leprosy. Documenta Geigy 1st edn 1977 Edited by Ciba-Geigy Basel Switzerland: pp 13–15
    [Google Scholar]
  22. Rodde O., Mohamed A.A.F., Liiesse G., Kazda J. Improved method for purification of Mycobacterium leprae from armadillo tissues. Int J Lepr 1992; 60:277–278
    [Google Scholar]
  23. Sela S., Clark-Curtiss J.E., Bercovier H. Characterization and taxonomic implications of the rRNA genes of Mycobacterium leprae. J bacteriol 1989; 171:70–73
    [Google Scholar]
  24. Shepard C.C., McRae D. Hereditary characteristic that varies among isolates of Mycobacterium leprae. Infect Immun 1971; 3:121–126
    [Google Scholar]
  25. Silbaq F., Bercovier H. Nucleotide sequence of Mycobacterium leprae elongation factor (EF-Tu) gene. Nucleic Acids Res 1993; 21:3327
    [Google Scholar]
  26. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston S., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993; 341:647–650
    [Google Scholar]
  27. Williams D.L., Gillis T.P., Portaels F. Geographically distinct isolates of Mycobacterium leprae exhibit no genotypic diversity by restriction fragment-length polymorphism analysis. Mol Microbiol 1990; 4:1653–1659
    [Google Scholar]
  28. De Wit M.Y.L., Douglas J.T., McFadden J., Klatser P.K. Polymerase chain reaction for the detection of Mycobacterium leprae in nasal swab specimens. J Clin Microbiol 1993; 31:502–506
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-8-1983
Loading
/content/journal/micro/10.1099/13500872-140-8-1983
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error