1887

Abstract

The catalytic and regulatory properties of aspartate transcarbamoylase from were studied in the GE5 strain isolated from a deep-sea hydrothermal vent located in the North-Fiji Basin in the SW Pacific Ocean. The enzyme from this hyperthermophilic archaeobacterium shows homotropic cooperative interactions between catalytic sites for the utilization of its two substrates, carbamoylphosphate and aspartate. The activity of this enzyme is subject to allosteric regulation. It is feed-back inhibited by the end-product cytidine triphosphate independently of temperature. In contrast, its sensitivity to the feed-back inhibitor uridine triphosphate and to the activator adenosine triphosphate disappears at high temperature. The unusual response of this aspartate transcarbamoylase to carbamoylphosphate analogues suggests a particular mode of binding of this substrate to the catalytic site as compared to the homologous enzymes of other organisms. Aspartate transcarbamoylase of exhibits a remarkable stability towards high temperature and pressure.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-1967
1994-08-01
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-1967.html?itemId=/content/journal/micro/10.1099/13500872-140-8-1967&mimeType=html&fmt=ahah

References

  1. Adams M.W.W. Enzymes and proteins from organisms that grow near and above 100°C. Annu Rev Microbiol 1993; 47:627–658
    [Google Scholar]
  2. Allen C.M.J., Jones M.E. Decomposition of carbamyl-phosphate in aqueous solutions. Biochemistry 1964; 3:1238–1247
    [Google Scholar]
  3. Allewell N.M. Escherichia coli aspartate transcarbamoylase: structure, energetics, and catalytic and regulatory mechanisms. Annu Rep Biophys Biochem Chem 1989; 18:71–92
    [Google Scholar]
  4. Argos P., Rossmann M.G., Grau U.M., Zuber H., Frank G., Tratschin J.D. Thermal stability and protein structure. Biochemistry 1979; 18:5698–5703
    [Google Scholar]
  5. Auzende J.M., Urabe T. Equipage Scientifique Le cadre geologique d'un site hydrothermal actif: la campagne 'Starmer 1' du submersible Nautile dans le bassin Nord Fidjien. C R Acad Sci Ser III Sci Vie 1989; 302:1787–1795
    [Google Scholar]
  6. Belkaid M., Penverne B., Denis M., Herve G. In situ behavior of the pyrimidine pathway enzymes in Saccharomyces cerevisiae 2 Reaction mechanism of aspartate transcarbamylase dissociated from carbamylphosphate synthetase by genetic alteration. Arch Biochem Biophys 1987; 254:568–578
    [Google Scholar]
  7. Breitung J., Borner G., Scholz S., Linder D., Stetter K.O., Thauer R.K. Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran: tetrahydro-metanopterin formyl transferase from the extreme thermophile Methanopyrus kandleri. Eur J Biochem 1992; 210:971–981
    [Google Scholar]
  8. Brock T.D. Thermophilic Microorganisms and Life at High Temperatures 1978 Edited by Starr M.P. New York: Springer-Verlag;
    [Google Scholar]
  9. Collins K.D., Stark G.R. Aspartate Transcarbamylase Interaction with the transition state analogue IV-(phosphonacetyl)-L-aspartate. J Biol Chem 1971; 246:6599–6605
    [Google Scholar]
  10. Colombo S., D'Auria S., Fusi P., Zecca L., Raia C.A., Tortora P. Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem 1992; 206:349–357
    [Google Scholar]
  11. Corliss J.B., Ballard R.D. Oases of life in the cold abyss. Natl Geogr Mag 1977; 152:441–453
    [Google Scholar]
  12. Davidson J.N., Chen K.C., Jamison R.S., Musmanno L.A., Kern C.B. The evolutionary history of the first three enzymes in pyrimidine biosynthesis. Bioessays 1993; 15:157–164
    [Google Scholar]
  13. England P., Herve G. Synergistic inhibition of Escherichia coli aspartate transcarbamylase by CTP and UTP: binding studies using continuous-flow dialysis. Biochemistry 1992; 31:9725–9732
    [Google Scholar]
  14. England P., Leconte C., Tauc P., Herve G. Apparent cooperativity for carbamylphosphate in Escherichia coli aspartate transcarbamylase only reflects cooperativity for aspartate. Eur J Biochem 1994 (in press)
    [Google Scholar]
  15. Erauso G., Charbonnier F., Barbeyron T., Forterre P., Prieur D. Preliminary characterization of a hyperthermophilic archaebacterium with a plasmid, isolated from a North Fiji basin hydrothermal vent. C R Acad Sci Ser III Sci Vie 1992; 314:387–393
    [Google Scholar]
  16. Erauso G., Reysenbach A.-L., Godfroy A., Meunier J.-R., Crump B., Partensky F., Baross J.A., Marteinsson V., Barbier G., Pace N.R., Prieur D. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep sea hydrothermal vent. Arch Microbiol 1993; 160:338–349
    [Google Scholar]
  17. Fabry S., Hensel R. Purification and characterization of a-glyceraldehyde-3-phosphate dehydrogenase from the thermophilic archaeobacterium Methanothermus fervidus. Eur J Biochem 1987; 165:147–155
    [Google Scholar]
  18. Ganter C., Pliickthun A. Glycine to alanine substitutions in helices of glyceraldehyde-3-phosphate dehydrogenase: effects on stability. Biochemistry 1990; 29:9395–9402
    [Google Scholar]
  19. Gerhart J.C., Pardee A.B. Aspartate transcarbamylase, an enzyme designed for feed-back inhibition. Ted Proc 1964; 23:727–735
    [Google Scholar]
  20. Herve G. Aspartate transcarbamylase from Escherichia coli. In Allosteric Enzymes 1989 Edited by Herve G. Boca Raton, Florida: CRC; pp 62–79
    [Google Scholar]
  21. Herve G., Nagy M., Le Gouar M., Penverne B., Ladjimi M. The carbamoyl phosphate synthetase-aspartate transcarbamoylase complex of Saccharomyces cerevisiae-, molecular and cellular aspects. Biochem Soc Trans 1993; 21:195–198
    [Google Scholar]
  22. Hsuanyu Y., Wedler F.C. Kinetic mechanism of native Escherichia coli aspartate transcarbamylase. Arch Biochem Biophys 1987; 259:316–330
    [Google Scholar]
  23. Hui Bon Hoa G., Hamel G., Else A., Weill G., Herve G. A reactor permitting injection and sampling for steady state studies of enzymatic reactions at high pressure: tests with aspartate transcarbamylase. Anal Biochem 1990; 187:258–261
    [Google Scholar]
  24. Imanaka T., Shibazaki M., Takagi M. A new way of enhancing the thermostability of proteases. Nature 1986; 324:695–697
    [Google Scholar]
  25. Ishikawa K., Nakamura H., Morikawa K., Kimura S., Kanaya S. Cooperative stabilization of Escherichia coli ribonuclease HI by insertion of Gly-80b and Gly-77-Ala substitution. Biochemistry 1993; 32:7136–7142
    [Google Scholar]
  26. Issaly I., Poiret M., Tauc P., Thiry L., Herve G. Interactions of Cibacron blue F3GA and nucleotides with Escherichia coli aspartate carbamoyltransferase and its subunits. Biochemistry 1982; 21:1612–1623
    [Google Scholar]
  27. Jacobson G.R., Stark G.R. Aspartate transcarbamylases. In The Enzymes 1973 Edited by Boyer P.D. New York: Academic Press; pp 225–308
    [Google Scholar]
  28. Kantrowitz E.R., Lipscomb W.N. Escherichia coli aspartate transcarbamylase: The molecular basis for a concerted allosteric transition. Trends Biochem Sci 1990; 15:53–59
    [Google Scholar]
  29. Kerbiriou D., Herve G. An Aspartate transcarbamylase lacking catalytic subunit interactions I. Disconnection of homotropic and heterotropic interactions under the influence of 2-thiouracil. J Mol Biol 1972; 64:379–392
    [Google Scholar]
  30. Krause K.L., Volz K.W., Lipscomb W.N. The 2 5 A structure of aspartate carbamoyltransferase complexed with the bisubstrate analogue N-(phosphonacetyl)-L-aspartate. J Mol Biol 1987; 193:527–553
    [Google Scholar]
  31. Leger D., Herve G. Allostery and pK & changes in aspartate transcarbamoylase from Escherichia coli: analysis of the pH dependence in the catalytic subunits. Biochemistry 1988; 27:4293–4298
    [Google Scholar]
  32. Lipscomb W.N. Activity and regulation in aspartate transcarbamylase Regulation of Proteins by Ligands 1992 Edited by Johnson R.J.V. Houston: The Robert A. Welch Foundation Conference on Chemical Research;
    [Google Scholar]
  33. Lowe S.E., Jain M.K., Zeikus J.G. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 1993; 57:451–509
    [Google Scholar]
  34. Moody M.F., Vachette P., Foote A.M. Changes in the X-ray solution scattering of aspartate transcarbamylase following the allosteric transition. J Mol Biol 1979; 133:517–532
    [Google Scholar]
  35. Parmentier L.E., Oleary M.H., Schachman H.K., Cleland W.W. 13C isotope effects as a probe of the kinetic mechanism and allosteric properties of Escherichia coli aspartate transcarbamylase. Biochemistry 1992; 31:6570–6576
    [Google Scholar]
  36. Penverne B., Herve G. In situ behavior of the pyrimidine pathway enzymes in Saccharomyces cerevisiae. I. Catalytic and regulatory properties of aspartate transcarbamylase. Arch Biochem Biophys 1983; 225:562–575
    [Google Scholar]
  37. Perbal B., Herve G. Biosynthesis of Escherichia coli aspartate transcarbamylase I Parameters of gene expression and sequential biosynthesis of the subunits. J Mol Biol 1972; 70:511–529
    [Google Scholar]
  38. Porter R.W., Modebe M.O., Stark G.R. Aspartate transcarbamylase Kinetic studies of the catalytic subunit. J Biol Chem 1969; 244:1846–1859
    [Google Scholar]
  39. Prescott L.M., Jones M.E. Modified methods for the determination of carbamyl aspartate. Anal Biochem 1969; 32:408–419
    [Google Scholar]
  40. Richter O.-M.H., Schafer G. Purification and enzymic characterization of the cytoplasmic pyrophosphatase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Eur J Biochem 1992; 209:343–349
    [Google Scholar]
  41. Schaffer M.H., Stark G.R. Aspartate transcarbamylase is not a ping-pong enzyme. Biochem Biophys Res Commun 1972; 46:2082–2086
    [Google Scholar]
  42. Stetter K.O., Fiala G., Huber G., Segerer A. Hyperthermophilic microorganisms. FEMS Microbiol Rev 1990; 75:117–124
    [Google Scholar]
  43. Swyryd E.A., Seaver S.S., Stark G.R. N-(phosphonacetyl)-L-aspartate, a potent transition state analog inhibitor of aspartate transcarbamylase, blocks proliferation of mammalian cells in culture. J Biol Chem 1974; 249:6945–6950
    [Google Scholar]
  44. Thiry L., Herve G. The stimulation of Escherichia coli aspartate transcarbamoylase activity by adenosine triphosphate Relations with the other regulatory conformational changes; a model. J Mol Biol 1978; 125:515–534
    [Google Scholar]
  45. Wakagi T., Lee C.-H., Oshima T. An extremely stable inorganic pyrophosphatase purified from the cytosol of a thermoacidophilic archaebacterium, Sulfolobus acidocaldaricus strain 7. Biochim Biophys Acta 1992; 1120:289–296
    [Google Scholar]
  46. Wedler F.C., Gasser F.J. Modes of modifier actions in E coli aspartate transcarbamylase. Arch Biochem Biophys 1974; 163:69–78
    [Google Scholar]
  47. Wild J.R., Loughrey-Chen S.J., Corder T.S. In the presence of CTP, UTP becomes an allosteric inhibitor of aspartate transcarbamoylase. Proc Natl Acad Sci USA 1989; 86:46–50
    [Google Scholar]
  48. Woese C.R., Kandler O., Wheelis M.L. Towards a natural system of organisms: Proposal for the domains Archae, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579
    [Google Scholar]
  49. Yutani K., Ogasahara K., Kimura A., Sugino Y. Effect of single amino acid substitutions at the same position on stability of a two-domain protein. J Mol Biol 1982; 160:387–390
    [Google Scholar]
/content/journal/micro/10.1099/13500872-140-8-1967
Loading
/content/journal/micro/10.1099/13500872-140-8-1967
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error