1887

Abstract

Treatment of with diazaborine strongly induces the synthesis of a 28 kDa protein which is associated with the cytoplasmic membrane. The partial amino acid sequence proved that this protein is identical to the phage shock protein PspA. The kinetics of the expression of the gene were determined in an strain which carried a fusion in the chromosome. PspA synthesis is independent of the growth phase. It is, however, strongly induced when fatty acid biosynthesis is inhibited by diazaborine or cerulenin. Treatment with either compound also causes dose-dependent inhibition of phospholipid biosynthesis whose degree correlates with the induction of PspA. Another cause of induction of PspA synthesis is treatment of with globomycin, which is an inhibitor of the processing of lipoproteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-1937
1994-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-1937.html?itemId=/content/journal/micro/10.1099/13500872-140-8-1937&mimeType=html&fmt=ahah

References

  1. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Smith J.A., Seidman J.G., Struhl K. Current Protocols in Molecular Biology 1987 New York: John Wiley;
    [Google Scholar]
  2. Bergler H., Hogenauer G., Turnowsky F. Sequences of the envM gene and of two mutated alleles in Escherichia coli. J Gen Microbiol 1992; 138:2093–2100
    [Google Scholar]
  3. Bergler H., Wallner P., Ebeling A., Leitinger B., Fuchsbichler S., Turnowsky F., Hogenauer G. Protein EnvM is the NADH dependent enoyl-ACP reductase (Fabl) of Escherichia coli. J Biol Chem 1994; 269:5495–5496
    [Google Scholar]
  4. Bochner B.R., Lee P.C., Wilson S.W., Cutler C.W., Ames B.N. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 1984; 37:225–232
    [Google Scholar]
  5. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254
    [Google Scholar]
  6. Brissette J.L., Russel M., Weiner L., Model P. Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci USA 1990; 87:862–866
    [Google Scholar]
  7. Brissette J.L., Weiner L., Ripmaster T.L., Model P. Characterization and sequence of the Escherichia coli stress-induced psp operon. J Mol Biol 1991; 220:35–48
    [Google Scholar]
  8. Carlson J.H., Silhavy T.J. Signal sequence processing is required for the assembly of LamB trimers in the outer membrane of Escherichia coli. J Bacteriol 1993; 175:3327–3334
    [Google Scholar]
  9. Casabadan M.J., Cohen S.N. Analysis of gene control signals by DNA fusion and modification of DNA in Escherichia coli. J Mol Biol 1980; 138:179–207
    [Google Scholar]
  10. D'Agnolo G., Rosenfeld I.S., Awaya J., Omura S., Vagelos P.R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of β-ketoacyl-acyl carrier protein synthetase. Biochim Biophjs Acta 1973; 326:155–166
    [Google Scholar]
  11. Egan A.F., Russell R.R.B. Conditional mutants affecting the cell envelope of E coli K12. Genet Res 1973; 21:139–152
    [Google Scholar]
  12. Garen A., Levinthal C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E coli I Purification and characterization of alkaline phosphatase. Biochim Biophys Acta 1960; 38:470–483
    [Google Scholar]
  13. Grassberger M.A., Turnowsky F., Hildebrand J. Preparation and antibacterial activities of the 1, 2, 3-diazaborine derivatives and analogues. J Med Chem 1984; 27:947–953
    [Google Scholar]
  14. Hogenauer G., Woisetschlager M. A diazaborine derivative inhibits lipopolysaccharide biosynthesis. Nature 1981; 293:662–664
    [Google Scholar]
  15. Ichihara S., Hussain M., Mizushima S. Characterization of new membrane lipoproteins and their precursors of Escherichia coli. J Biol Chem 1981; 256:3125–3129
    [Google Scholar]
  16. Inukai M., Nakajima M., Osawa M., Haneishi T., Arai M. Globomycin, a new peptide antibiotic with spheroplast-forming activity II Isolation and physico-chemical and biological characterization. J Antibiot 1978a; 31:421–425
    [Google Scholar]
  17. Inukai M., Takeuchi M., Shimizu K., Arai M. Mechanism of action of globomycin. J Antibiot 1978b; 31:1203–1205
    [Google Scholar]
  18. Kleerebezem M., Tommassen J. Expression of the psp A gene stimulates efficient protein export in Escherichia coli. Mol Microbiol 1993; 7:947–956
    [Google Scholar]
  19. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome. Application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 1987; 50:495–508
    [Google Scholar]
  20. Lee P.C., Bochner B.R., Ames B.N. Diadenosine 5', 5'"-P1, P4-tetraphosphate and related adenylylated nucleotides in Salmonella typhimurium. J Biol Chem 1983; 258:6827–6834
    [Google Scholar]
  21. Miller J.H. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Russel M., Kazmierczak B. Analysis of the structure and subcellular location of filamentous phage pIV. J Bacteriol 1993; 175:3998–4007
    [Google Scholar]
  23. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual 1989 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sanger F., Nicklen S., Coulsen A.R. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  25. Silhavy T.J., Berman M.L., Enquist L.W. Experiments with Gene Fusions 1984 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Simons R.W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 1987; 53:85–96
    [Google Scholar]
  27. Turnowsky F., Fuchs K., Jeschek C., Hogenauer G. envM genes of Salmonella typhimurium and Escherichia coli. J Bacteriol 1989; 171:6555–6565
    [Google Scholar]
  28. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol 1987; 153:3–11
    [Google Scholar]
  29. Weiner L., Brissette J.L., Model P. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on σ54 and modulated by positive and negative feedback mechanisms. Genes Dev 1991; 5:1912–1923
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-8-1937
Loading
/content/journal/micro/10.1099/13500872-140-8-1937
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error