1887

Abstract

Marked cell swelling followed by lysis was observed when cells were incubated in iso-osmotic solutions of NaCl, KCI, choline chloride or sorbitol in the absence of an energy source. In the presence of an energy source the cells did not swell suggesting that relies on an energy-dependent mechanism(s) for cell volume regulation. An ammonium chloride dilution procedure was utilized to generate a pH gradient (inside acid) across the cell membrane of cells. The addition of NaCl resulted in an intracellular alkalization suggesting the presence of a Na/H exchange activity. In Na-loaded cells, glucose-dependent Na extrusion was observed at acidic pH in both the presence and absence of Na ions. The extrusion was completely inhibited by carbonyl cyanide -chlorophenylhydrazone (CCCP, 10 μM) and partially inhibited by dicyclohexylcarbodiimide (DCCD, 100 μM) indicating that in , Na movement is driven by the electrochemical gradient of H via a Na/H antiporter. The specific ATPase activity of membranes was at least twofold higher than that described in other mollicutes. Activity was Mg-dependent over the pH range (6.5-8.5) tested, but was very little affected by Na (up to 100 mM). DCCD (25 μM) markedly inhibited both membrane-bound and solubilized ATPase activity, whereas orthovanadate (50 μM) had only a small inhibitory effect. The properties of the enzyme are consistent with a FF-ATPase. It is suggested that the enzyme operates in the direction of hydrolysing ATP formed by glycolysis leading to the generation of a δpH, which is the major driving force for the Na/H antiport activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-1899
1994-08-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-1899.html?itemId=/content/journal/micro/10.1099/13500872-140-8-1899&mimeType=html&fmt=ahah

References

  1. Benyousef M., Rigaud J.L., Leblanc G. Cation transport mechanisms in Mycoplasma mycoides var. capri cells. Na+ accumulation. Biochem J 1982; 208:539–547
    [Google Scholar]
  2. Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917
    [Google Scholar]
  3. Chandler D.K.F., Olson L.D., Kenimer J.G., Probst P.G., Rottem S., Grabowski M.W., Barile M.F. Biological activities of monoclonal antibodies to Mycoplasma pneumoniat membrane glycolipids. Infect lmmun 1989; 52:1131–1136
    [Google Scholar]
  4. Cole H., Wimpenny J., Hughes D. The ATP pool in Escherichia coli. I. Measurement of the pool using a modified luciferase assay. Biochim Biophys Acta 1967; 143:445–453
    [Google Scholar]
  5. Dimroth P. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev 1987; 51:320–340
    [Google Scholar]
  6. Futai M., Kanazawa H. Structure and function of proton translocating adenosine triphosphatase (FqFj): biochemical and molecular biological approaches. Microbiol Rer 1983; 47:285–312
    [Google Scholar]
  7. Goldberg E.B., Arbel T., Chen J., Chen R., Karpel G.A., Mackie S., Schuldiner S., Padan E. Characterization of a Na+/H+ antiporter gene of Escherichia coli. Proc Natl Acad 1987; Sci:USA 84, 2615–2619
    [Google Scholar]
  8. Harold F.M., Kakinuma Y. Primary and secondary transport of cations in bacteria. Ann NY Acad Sci 1985; 456:375–383
    [Google Scholar]
  9. Krulwich T.A. Na+/H+ antiporters. Biochim Biophys Acta 1983; 726:245–264
    [Google Scholar]
  10. Lewis R., McElhaney R.N. Purification and characterization of the membrane (Na+ Mg+2)-ATPase from Acholeplasma laidlawii B. Biochim Biophys Acta 1983; 735:113–122
    [Google Scholar]
  11. Linker C., Wilson T.H. Cell volume regulation in Mycoplasma gallisepticum. J Bacteriol 1985a; 163:1243–1249
    [Google Scholar]
  12. Linker C., Wilson T.H. Sodium and proton transport in Mycoplasma gallisepticum. J Bacteriol 1985b; 163:1250–1257
    [Google Scholar]
  13. Linker C., Wilson T.H. Characterization and solubilization of the membrane-bound ATPase of Mycoplasma gallisepticum. J Bacterioll 1985c; 63:1258–1262
    [Google Scholar]
  14. McEnery M.W., Pedersen P.L. Diethylstilbestrol, a novel F0-directed probe of the mitochondrial proton ATPase. J Biol Chem 1986; 261:1745–1752
    [Google Scholar]
  15. Martinez-Azorin F., Teruel L.A., Fernandez-Belda F., Gomez-Fernandez J. Effect of diethylstilbestrol and related compounds on the Ca+2-transporting ATPase of sarcoplasmic reticulum. J Biol Chem 1992; 267:11923–11929
    [Google Scholar]
  16. Neimark H. Origins and evolution of wall-less procaryotes. In The Bacterial L-Forms 1986 Edited by Madoff S. New York : Marcel Dekker; pp 21–42
    [Google Scholar]
  17. Padan E., Schuldiner S. Intracellular pH regulation in bacterial cells. Methods Encymol 1986; 125:337–352
    [Google Scholar]
  18. Pederson P.L., Carafoli S. Ion motive ATPases. I. 1987; Ubiquity:properties, and significance to cell function. Trends Biochem Sci 12, 146–150
    [Google Scholar]
  19. Pollack J.D. Carbohydrate metabolism and energy conservation. In Mycoplasmas-Molecular Biology and Pathogenesis 1992 Edited by Maniloff J. Washington: American Society fo; pp 181–200
    [Google Scholar]
  20. Rasmussen O.F., Shirvan M.H., Margalit H., Christiansen C., Rottem S. Nucleotide sequence, organization and characterization of the atp genes and the encoded subunits of Mycoplasma gallisepticum ATPase. Biochem J 1992; 285:881–888
    [Google Scholar]
  21. Razin S. The mycoplasma membrane. In Organisation of Prokaryotic Cell Membranes 1981 Edited by Ghosh B.K. Boca Raton, FL: CRC Press; 1 pp 165–250
    [Google Scholar]
  22. Rosen B.P. Recent advances in bacterial ion transport. Annu Rev Microbiol 1986; 40:263–286
    [Google Scholar]
  23. Rottem S. Characterization of membrane lipids. Methods Mycoplasmol 1983; 1:269–275
    [Google Scholar]
  24. Rottem S., Verkleij A.J. Possible association of segregated lipid domains of Mycoplasma gallisepticum membranes with cell resistance to osmotic lysis. J Bacteriol 1982; 149:338–345
    [Google Scholar]
  25. Rottem S., Markowitz O. Membrane lipids of Mycoplasma gallisepticum. A disaturated phosphatidylcholine and a phosphatidy-glycerol with an unusual positioned distribution of fatty acids. Biochemistry 1979; 18:2930–2935
    [Google Scholar]
  26. Rottem S., Linker C., Wilson T.H. Proton motive force across the membrane of Mycoplasma gallisepticum and its possible role in cell volume regulation. J Bacteriol 1981; 145:1299–1304
    [Google Scholar]
  27. Rottem S., Shirvan M.H., Barile M.F. Immunochemical evidence for an active (F1F0)-ATPase in mycoplasmas. Isr J Med Sci 1987; 23:389–392
    [Google Scholar]
  28. Schummer U., Schiefer H.G. Transmembrane proton-motive potential of Spiroplasma floricola. FEMS Microbiol Letts 1987; 224:79–82
    [Google Scholar]
  29. Shirvan M.H., Rottem S. Ion pumps and volume regulation in mycoplasma. In Mycoplasma Membranes: Subcellular Biochemistry 1993 Edited by Rottem S., Kahane I. New York: Plenum Press; 20 pp 261–292
    [Google Scholar]
  30. Shirvan M.H., Schuldiner S., Rottem S. Role of Na+ cycle in cell volume regulation of Mycoplasma gallisepticum. J Bacteriol 1989a; 171:4410–4416
    [Google Scholar]
  31. Shirvan M.H., Schuldiner S., Rottem S. Volume regulation in Mycoplasma gallisepticum: evidence that Na+ is extruded via a primary Na+ pump. J Bacteriol 1989b; 171:4417–4424
    [Google Scholar]
  32. Simoneau P., Labarere J. Evidence for the presence of two distinct membrane ATPases in Spiroplasma citri. J Gen Microbiol 1991; 137:179–183
    [Google Scholar]
  33. Williamson D.L. The genus Spiroplasma. In The My coplasmas 1989 Edited by Whitcomb R.F., Tully J.G. New York: Academic Press; 5 pp 71–111
    [Google Scholar]
  34. Wilson T.H. Ionic permeability and osmotic swelling. Science 1954; 120:104–105
    [Google Scholar]
  35. Wilson T.H., Lin E.C.C. Evolution of membrane bioenergetics. J Supramol Struct 1980; 13:421–446
    [Google Scholar]
  36. Whitcomb R.F. Culture media for spiroplasmas. Methods Mycoplasmol 1983; 1:147–158
    [Google Scholar]
  37. Zilberstein D., Shirvan M., Barile M., Rottem S. The subunit of the F1F0-ATPase is conserved in mycoplasmas. J Biol Chem 1986; 261:7109–7111
    [Google Scholar]
/content/journal/micro/10.1099/13500872-140-8-1899
Loading
/content/journal/micro/10.1099/13500872-140-8-1899
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error