Biochemical characterization of cytolytic δ-endotoxins Free

Abstract

The entomocidal δ-endotoxins CytA and CytB produced by () subspecies and respectively showed a similar level of toxicity to mosquito larvae but were not toxic to the larvae of the lepidopteran . CytA and CytB are also similar in sequence, predicted secondary structure and α-helical content, the only obvious difference being a C-terminal fifteen residue ‘tail’ on CytB. Investigations of the function, if any, of the CytB C-terminal ‘tail’ showed that this δ-endotoxin is highly expressed and forms inclusions in an acrystalliferous mutant without the aid of the 20 kDa ‘helper’ protein from subspecies which is essential for CytA inclusion formation. After proteinase K treatment, CytA and CytB were processed to virtually the same points in a sequence alignment and were equally haemolytic . However, the results suggested that unprocessed CytB differs from unprocessed CytA in that the former is not haemolytic.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-1869
1994-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-1869.html?itemId=/content/journal/micro/10.1099/13500872-140-8-1869&mimeType=html&fmt=ahah

References

  1. Adams L.F., Visick J.E., Whiteley H.R. A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol 1989; 171:521–530
    [Google Scholar]
  2. Armstrong J.L., Rohrmann G.F., Beaudreau G.S. Delta endotoxin of Bacillus thuringiensis subsp. israelensis. J Bacteriol 1985; 161:39–46
    [Google Scholar]
  3. Bechtel D.B., Bulla L.A. Electron microscopic study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J Bacteriol 1976; 121:1472–1481
    [Google Scholar]
  4. Bone E.J., Ellar D.J. Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol Eett 1989; 58:171–178
    [Google Scholar]
  5. Bordo D., Argos P. Suggestions for "safe" residue substitutions in site-directed mutagenesis. J Mol Biol 1991; 217:721–729
    [Google Scholar]
  6. Brown K.L., Whiteley H.R. Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes. Proc Natl Acad Sci USA 1988; 85:4166–4170
    [Google Scholar]
  7. Brown K.L., Whiteley H.R. Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter. J Bacteriol 1990; 172:6682–6688
    [Google Scholar]
  8. Cantor C.R., Schimmel R.R. Biophysical Chemistry, part II, Techniques for the Study of Biological Structure and Function 1980 San Francisco: W.H. Freeman & Co;
    [Google Scholar]
  9. Carroll J. A study of the Bacillus thuringiensis insecticidal delta-endotoxtns 1990 PhD thesis, University of Cambridge;
    [Google Scholar]
  10. Chang C., Yu Y.-M., Dai S.-M., Law S.K., Gill S.S. High level cry 11 'D and cyt A expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl Environ Microbiol 1993; 59:815–821
    [Google Scholar]
  11. Chilcott C.N., Ellar D.J. Comparative toxicity of Bacillus thuringiensis var israelensis crystal proteins in vivo and in vitro. J Gen Microbiol 1988; 134:2551–2558
    [Google Scholar]
  12. Chow E., Singh G.J.P., Gill S.S. Binding and aggregation of the 25-Kilodalton toxin of Bacillus thuringiensis subsp. israelensis to cell membranes and alteration by monoclonal antibodies and amino acid modifiers. Appl Environ Microbiol 1989; 55:2779–2788
    [Google Scholar]
  13. Couche G.A., Pfannenstiel M.A., Nickerson K.W. Structural disulphide bonds in the Bacillus thuringiensis subsp. israelensis protein crystal. J Bacteriol 1987; 169:3281–3288
    [Google Scholar]
  14. Crickmore N., Ellar D.J. Involvement of a possible chaperonin in the efficient expression of a cloned CryllA 5-endotoxin gene in Bacillus thuringiensis. Mol Microbiol 1992; 6:1533–1537
    [Google Scholar]
  15. Crickmore N., Bone E.J., Ellar D.J. Genetic manipulation of Bacillus thuringiensis: towards an improved pesticide. Aspects Appl Biol 1990; 24:17–24
    [Google Scholar]
  16. Dower W.J., Miller J.F., Ragsdale C.W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 1988; 16:6127–6145
    [Google Scholar]
  17. Earp D.J., Ellar D.J. Bacillus thuringiensis var. morrisoni strain PG14: nucleotide sequence of a gene encoding a 27 kDa crystal protein. Nucleic Acids Res 1987; 15:3619
    [Google Scholar]
  18. Earp D.J., Ward E.S., Ellar D.J. Investigation of possible homologies between crystal proteins of three mosquito-cidal strains of Bacillus thuringiensis. FEMS Microbiol Eett 1987; 42:195–199
    [Google Scholar]
  19. Ellar D.J., Posgate J.A. Characterisation of forespores isolated from Bacillus megaterium at different stages of development into mature spores. In Spore Research-1973 1974 Edited by Barker A.N., Gould G.W., Wolf J. London: Academic Press; pp 21–40
    [Google Scholar]
  20. Ellman G.L. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82:70–77
    [Google Scholar]
  21. Held G.A., Kawanishi C.Y., Huang Y.-S. Characterization of the parasporal inclusion of Bacillus thuringiensis subsp. kyushuensis. J Bacteriol 1990; 172:481–483
    [Google Scholar]
  22. Hofte H., Whiteley H.R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 1989; 53:242–255
    [Google Scholar]
  23. Hopwood D., Milne G. Fixation. In Electron Microscopy in Biology: a Practical Approach 1991 Edited by Harris J.R. Oxford: IRL Oxford Press; pp 1–14
    [Google Scholar]
  24. Knowles B.H., Ellar D.J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis 5-endotoxins with different specificity. Biochim Biophys Acta 1987; 924:509–518
    [Google Scholar]
  25. Knowles B.H., Carroll J.G., Horsnell J.M., Ellar D.J. Interactions of a cytolytic toxin from Bacillus thuringiensis var. israelensis with liposomes and membranes. In Bacterial Protein Toxins 1990a Edited by Rappuoli R., Alouf J.E., Falmagne P., Fehrenbach F.J., Freer J., Gross R., Jeljaszewicz J., Monte-Cucco C., Tomasi M., Wadstrom T., Witholt B. Stuttgart: Gustav Fischer Verlag; pp 207–208
    [Google Scholar]
  26. Knowles B.H., Nicholls C.N., Armstrong G., Tester M., Ellar D.J. Broad spectrum cytolytic toxins made by Bacillus thuringiensis. In Fifth International Colloquium on Invertebrate Pathology and Microbial Control: 1990 1990b Adelaide, Australia: Society for Invertebrate Pathology; pp 283–287
    [Google Scholar]
  27. Knowles B.H., White P.J., Nicholls C.N., Ellar D.J. A broad spectrum cytolytic toxin from Bacillus thuringiensis var. kyushuensis. Proc R Soc Eond Ser B Biol Sci 1992; 248:1–7
    [Google Scholar]
  28. Koni P.A., Ellar D.J. Cloning and characterization of a novel Bacillus thuringiensis cytolytic delta-endotoxin. J Mol Biol 1993; 229:319–327
    [Google Scholar]
  29. Laemmli U.K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 1973; 80:575–599
    [Google Scholar]
  30. Li J., Carroll J., Ellar D.J. Crystal structure of insecticidal 5-endotoxin from Bacillus thuringiensis at 2-5 A resolution. Nature 1991; 353:815–821
    [Google Scholar]
  31. Loo J.A., Udseth H.R., Smith R.D. Peptide and protein analysis by electrospray ionization mass-spectrometry and capillary electrophoresis mass-spectrometry. Anal Biochem 1989; 179:404–412
    [Google Scholar]
  32. Luthy P., Cordier J.-L., Fischer H.-M. Bacillus thuringiensis as a bacterial insecticide: basic considerations and applications. In Microbial & Viral Pesticides 1982 Edited by Kurstak E. New York: Marcel Dekker; pp 35–74
    [Google Scholar]
  33. Macintosh S.C., McPherson S.L., Perlak P.G., Marrone P.G., Fuchs R.L. Purification and characterization of Bacillus thuringiensis var tenebrionis insecticidal proteins produced in E. coli. Biochem Biophys Res Commun 1990; 170:665–672
    [Google Scholar]
  34. Provencher S.W. Contin-a general-purpose constrained regularization program for inverting noisy linear algebraic and integral-equations. Comput Phys Commun 1982; 27:229–242
    [Google Scholar]
  35. Provencher S.W., Glockner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry 1981; 20:33–37
    [Google Scholar]
  36. Ravoahangimalala O., Charles J.-F., Schoeller-Raccaud J. Immunological localization of Bacillus thuringiensis serovar israelensis toxins in midgut cells of intoxicated Anopheles gambiae larvae (Diptera: Culicidae). Res Microbiol 1993; 144:271–278
    [Google Scholar]
  37. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Eaboratory Manual 1989 2nd edn Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Smith M., Croft S. Embedding and thin section preparation. In Electron Microscopy in Biology: a Practical Approach 1991 Edited by Harris J.R. Oxford: IRL Oxford Press; pp 17–37
    [Google Scholar]
  39. Staden R. Computer handling of DNA sequencing projects. In Nucleic Acids and Protein Sequence Analysis: a Practical Approach 1987 Edited by Bishop M.J., Rawlings C.J. Oxford: IRL Oxford Press; pp 173–218
    [Google Scholar]
  40. Stewart G.S.A.B., Johnstone K., Hagelberg E., Ellar D.J. Commitment of bacterial spores to germinate. Biochem J 1981; 198:101–106
    [Google Scholar]
  41. Thomas W.E., Ellar D.J. Bacillus thuringiensis var israelensis crystal z-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci 1983a; 60:181–197
    [Google Scholar]
  42. Thomas W.E., Ellar D.J. Mechanism of action of Bacillus thuringiensis var israelensis insecticidal z-endotoxin. FEBS Lett 1983b; 154:362–368
    [Google Scholar]
  43. Visick J.E., Whiteley H.R. Effect of a 20-kilodalton protein from Bacillus thuringiensis subsp. israelensis on production of the CytA protein by Escherichia coli. J Bacteriol 1991; 173:1748–1756
    [Google Scholar]
  44. Visser B., Workum M.V., Dullemans A., Waalwijk C. The mosquitocidal activity of Bacillus thuringiensis var. israelensis is associated with Mr 230000 and 130000 crystal proteins. FEMS Microbiol Lett 1986; 30:211–214
    [Google Scholar]
  45. Waalwijk C., Dullemans A.M., Van Workum M.E.S., Visser B. Molecular cloning and the nucleotide sequence of the Mr 28000 crystal protein gene of Bacillus thuringiensis subsp. israelensis. Nucleic Acids Rh 1985; 13:8207–8217
    [Google Scholar]
  46. Ward E.S., Ellar D.J. Cloning and expression in Escherichia coli of the insecticidal z-endotoxin gene of Bacillus thuringiensis var israelensis. FEBS Lett 1984; 175:377–382
    [Google Scholar]
  47. Ward E.S., Ellar D.J., Chilcott C.N. Single amino acid changes in the Bacillus thuringiensis var. israelensis δ-endotoxin affect the toxicity and expression of the protein. J Mol Biol 1988; 202:527–535
    [Google Scholar]
  48. Wu D., Federici B.A. A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. J Bacteriol 1993; 175:5276–5280
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-8-1869
Loading
/content/journal/micro/10.1099/13500872-140-8-1869
Loading

Data & Media loading...

Most cited Most Cited RSS feed