1887

Abstract

A gene called (lipoprotein-like) has been isolated from a genomic library of expressed in . Clones carrying the gene were selected by the ability of the colonies to give visible haloes of starch hydrolysis. The cloned fragment contains an open reading frame (ORF) of 1509 bp encoding a protein of 56 kDa. The protein contains a typical N-terminal signal sequence, a putative transmembrane anchor domain and a leucine zipper at the C-terminus. The expression of this protein in causes cell lysis, only the N-terminal domain of the LpIA protein being responsible for this phenotype. The mechanism of cell lysis is similar to that previously suggested for the expression in of the lipoproteins encoded by the genes and . The protein is modified with palmitic acid when secreted in , confirming that it is a typical lipoprotein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-1839
1994-08-01
2022-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-1839.html?itemId=/content/journal/micro/10.1099/13500872-140-8-1839&mimeType=html&fmt=ahah

References

  1. Bolivar F., Rodriguez R.L., Greene P.J., Betlach M.C., Heyneker H.L., Boyer H.W., Crosa J.H., Falkow S. Construction and characterization of new cloning vehicles II A multipurpose cloning system. Gene 1977; 2:95–113
    [Google Scholar]
  2. Bron S., Luxen E. Segregational instability of pUBllO-derived recombinant plasmids in Bacillus subtilis. Plasmid 1985; 14:235–244
    [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12:387–395
    [Google Scholar]
  4. Gennity J.M., Inouye M. The protein sequence responsible for lipoprotein membrane localization in Escherichia coli exhibits remarkable specificity. J Biol Chem 1991; 266:16458–16464
    [Google Scholar]
  5. Gennity J.M., Kim H., Inouye M. Structural determinants in addition to amino terminal sorting sequence influence membrane localization of Escherichia coli lipoproteins. J Bacteriol 1992; 174:2095–2101
    [Google Scholar]
  6. Gilson E., Alloing G., Schmidt T., Claverys J.P., Dudler R., Hofnung M. Evidence for high affinity binding-protein dependent transport systems in Gram-positive bacteria and in Mycoplasma. EMBO J 1988; 7:3971–3974
    [Google Scholar]
  7. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580
    [Google Scholar]
  8. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 1984; 28:351–359
    [Google Scholar]
  9. Henning U., Royer H.D., Leather R.M., Hindennach I., Hollenberg C.P. Cloning of the structural gene (OmpA) for an integral outer-membrane protein of Escherichia coli K12. Proc Natl Acad Sci USA 1979; 76:4360–4364
    [Google Scholar]
  10. Hoop T.P., Wood K.R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 1981; 78:3824–3828
    [Google Scholar]
  11. Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 1982; 150:815–825
    [Google Scholar]
  12. Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 1961; 3:208–218
    [Google Scholar]
  13. Martin B., Alloing G., Boucraut C., Claverys J.P. The difficulty of cloning Streptococcus pneumoniae mal and ami loci in Escherichia coli: toxicity of malX and amiA gene products. Gene 1989; 80:227–238
    [Google Scholar]
  14. Messing J. New Ml3 vectors for cloning. Methods Enzymol 1983; 101:20–78
    [Google Scholar]
  15. Perez-Martinez G., Kok J., Venema G., Van Dijl J.M., Smith H., Bron S. Protein export elements from Lactococcus lactis. Mol Gen Genet 1992; 234:401–411
    [Google Scholar]
  16. Priest F.G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 1977; 41:711–753
    [Google Scholar]
  17. Raha M., Kawagishi I., Muller V., Kihara M., Macnab R.M. Escherichia coli produces a cytoplasmic a-amylase, Amy A. J Bacteriol 1992; 174:6644–6652
    [Google Scholar]
  18. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: A Laboratory Manual 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  20. Schwartz M. The maltose regulon. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology 1987 Edited by Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechler M., Umbarger H.E. Washington, DC: American Society for Microbiology; pp 1482–1502
    [Google Scholar]
  21. Smith H., Bron S., Ec J.V., Venema G. Construction and use of signal sequence selection vectors in E. coli and B. subtilis. J Bacteriol 1987; 169:3321–3328
    [Google Scholar]
  22. Willemot K., Cornelis P. Growth defects of Escherichia coli cells which contain the gene of an a-amylase from Bacillus coagulans on a multicopy plasmid. J Gen Microbiol 1983; 129:311–319
    [Google Scholar]
  23. Yamaguchi K., Yu F., Inouye M. A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 1988; 53:423–432
    [Google Scholar]
  24. Yang M., Galizzi A., Henner D. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Res 1983; 11:237–249
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-8-1839
Loading
/content/journal/micro/10.1099/13500872-140-8-1839
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error