gen. nov., sp. nov., a Gram-negative motile coccus with unusual morphology isolated from the human mouth Free

Abstract

An organism that seems to be identical to ⊘rskov's '' [⊘rskov J. (1930) , 519-541] has been rediscovered in specimens from the upper respiratory tract of humans. Six strains were studied, and the results, which conformed to ⊘rskov's description of , were as follows. Rough to smooth colonies grow on many plated media and show extremely polymorphic cell morphology with round cells wit diameters from 1 to > 10 μm. The smallest cells were often motile with circular movements. Strains were Gram-negative, facultatively anaerobic, oxidase and urease positive, and weakly catalase positive. Nitrate and nitrite were reduced and glucose, fructose, sucrose and mannitol were fermented. Polysaccharide was produced on sucrose agar. Electron microscopy showed coccoid cells with a bundle of three to nine flagella, a Gram-negative cell-wall morphology, and aggregates of irregular cells held together by a common surface layer. The mean mol% (G + C) of the organisms was 65·0. 16S-ribosomal RNA sequencing revealed that the organism belongs to the beta subgroup of , separate from all other described genera, but most closely related to . The name is proposed for this organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-7-1787
1994-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/7/mic-140-7-1787.html?itemId=/content/journal/micro/10.1099/13500872-140-7-1787&mimeType=html&fmt=ahah

References

  1. Bergquist L.M., Searcy R. L. 1963; A micro method for detection of utilization of phenylalanine by microorganisms. Am J Clin Pathol 39:544–545
    [Google Scholar]
  2. Blom J., Hansen G. H., Poulsen F. M. 1983; Morphology of cells and hemaggludnogens of Bordetella species: resolution of substructural units in fimbriae of Bordetella pertussis . Infect Immun 42:308–317
    [Google Scholar]
  3. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  4. Billow P. 1964; The ONPG test in diagnostic bacteriology. Acta Pathol Microbiol Scand 60:376–386
    [Google Scholar]
  5. Carlsson J. 1968; A numerical taxonomic study of human oral streptococci. Odontol Revy 19:137–160
    [Google Scholar]
  6. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  7. Dewhirst F. E., Paster B. J., Bright P. C. 1989; Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella and Vitreoscilla species comprise a major branch by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend.). Int J Syst Bacteriol 39:258–266
    [Google Scholar]
  8. Dorsch M., Stackebrandt E. 1992; Some modifications in the procedure of direct sequencing of PCR amplified 16S rDNA. J Microbiol Methods 16:271–279
    [Google Scholar]
  9. Gerner-Smidt P. 1989; Frequency of plasmids in Acinetobacter calcoaceticus . J Hosp Infect 14:23–28
    [Google Scholar]
  10. Gibbons R.J., Banghart S. B. 1967; Synthesis of extracellular dextran by carcinogenic bacteria and its presence in human dental plaque. Arch Oral Biol 12:11–24
    [Google Scholar]
  11. Hendrichson D.A., Krenz M. M. 1991; Reagents and stains. In Manual of Clinical Microbiology, 5th edn. chapter 122, p. 1313 Edited by Balows A., Hausler W. J. , Herrmann K. L. , Isenberg H. D. , Shadomy H. J. . Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Holmes D.S., Quigley M. 1981; A rapid method for the preparation of bacterial plasmids. Anal Biochem 114:193–197
    [Google Scholar]
  13. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  14. Jukes T.H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism 3 pp. 21–132 Edited by Munro J.N. New York: Academic Press;
    [Google Scholar]
  15. Kilian M., Biilow P. 1976; Rapid diagnosis of Enterobacteriaceae. Detection of bacterial glycosidases. Acta Pathol Microbiol Scand Sect B 84:245–251
    [Google Scholar]
  16. Klesius P. H., Lippincott S. C., Bienvenu R. J. 1962; Unusual Gram-negative organism from the oral flora. J Bacteriol 84:378–380
    [Google Scholar]
  17. Koch R. 1884 Konferenz zur Erorterung der Cholerafrage am 26 Juli 1884 in Berlin. Berliner Klinischer Wochenschrift no. 31 32 and 32a. (Reprinted in Gesammelte Werkevon Robert KochBand II, 1. Teil, p. 1912 20–60 Leipzig: Verlag von Georg Thieme;
    [Google Scholar]
  18. Kolmos H.J., Schmidt J. 1987; Failure to detect hydrogen-sulphide production in lactose/sucrose fermenting Enterobacteriaceae using triple sugar iron agar. Acta Pathol Microbiol Immunol Scand Sect B 95:85–87
    [Google Scholar]
  19. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 176:703
    [Google Scholar]
  20. Lautrop H. 1960; Laboratory diagnosis of whooping cough or Bordetella infections. Bull WHO 23:15–35
    [Google Scholar]
  21. Li X., Dorsch M., Del Dot T., Sly L. I., Stackebrandt E., Hayward A. C. 1993; Phylogenetic studies of the rRNA group II pseudomonads based on 16S rRNA gene sequences. J Appl Microbiol 74:324–329
    [Google Scholar]
  22. Lind E., Ursing J. 1986; Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand Sect B 94:205–213
    [Google Scholar]
  23. Melchior N. H., Blom J., Tybring L, Birch-Andersen A. 1973; Light and electron microscopy of the early response of Escherichia coli to a 6-β-amidinopenicillanic acid (FL 1060). Acta Pathol Microbiol Immunol Scand Sect B 81:393–407
    [Google Scholar]
  24. Moller V. 1955; Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. Acta Pathol Microbiol Scand 36:158–172
    [Google Scholar]
  25. Morse S.A., Knapp J. S. 1991; The genus Neisseria . In The Prokaryotes pp. 2495–2529 Edited by Balows A., Triiper H. G. , Dworkin M., Harder W. , Schleifer K. H. . Berlin: Springer Verlag;
    [Google Scholar]
  26. Neubauer T., Berger U. 1961; Polysaccharidbildung aus saccharose durch einen ‘saccharosenegativen’ keim: Neisseria flavescens . Naturwissenschaften 48:405–406
    [Google Scholar]
  27. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Woese C. R. 1992; The ribosomal database project. Nucleic Acids Res 20S:2199–2200
    [Google Scholar]
  28. O'Meara R. A. Q. 1931; A simple, delicate and rapid method of detecting the formation of acetylmethylcarbinol by bacteria fermenting carbohydrate. J Pathol Bacteriol 34:401–406
    [Google Scholar]
  29. Orskov J. 1930; Untersuchungen tiber einen in Mundhohle und oberen Luftwegen haufig vorkommenden, zur Jitrrhwgruppe ge-horigen Mikroben, der eigentiimliche morphologische Verhalt-nisse aufweist. Acta Pathol Microbiol Scand Suppl 3:519–541
    [Google Scholar]
  30. Rainey F.A., Stackebrandt E. 1993; Phylogenetic analysis of the bacterial genus Thermobacteroides indicates an ancient origin of Thermobacteroides proteolyticus . Lett Appl Microbiol 16:282–286
    [Google Scholar]
  31. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales . Syst Appl Microbiol 15:197–202
    [Google Scholar]
  32. Rossau R., Vandenbussche F., Thielemans S., Segers P., Grosch H., Gothe E., Mannheim W., De Ley J. 1989; Ribosomal ribonucleic acid cistron homologies of Neisseria, Kingella, Simonsiella, Alysiella and Centers for Disease Control Group EF-4 and M5 in the emended family Neisseriaceae . Int J Syst Bacteriol 39:185–189
    [Google Scholar]
  33. Sandstedt K., Ursing J., Walder M. 1983; Thermotolerant Campylobacter with no or weak catalase activity isolated from dogs. Curr Microbiol 8:209–213
    [Google Scholar]
  34. Schiött C.R. 1967; An unidentified Gram negative rod isolated from the gingiva. J Periodontal Res 2:242–243
    [Google Scholar]
  35. Stackebrandt E., Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii specific oligonucleotide probe. J Gen Microbiol 136:37–43
    [Google Scholar]
  36. Vaughn R.H., Levine M. 1942; Differentiation of the ‘intermediate’ coli-like bacteria. J Bacteriol 44:487–505
    [Google Scholar]
  37. Yabuuchi E., Kosako Y., Oyaizo H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes, 1981) comb. nov. Microbiol Immunol 36:1251–1275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-7-1787
Loading
/content/journal/micro/10.1099/13500872-140-7-1787
Loading

Data & Media loading...

Most cited Most Cited RSS feed