1887

Abstract

An mutant, lacking the leucine-responsive regulatory protein and the global response it controls, is deregulated in the expression of many genes, but is nevertheless able to grow in glucose-minimal medium at 37 °C. In the presence of isoleucine and valine, the growth rate of the mutant at 37 °C is significantly increased by exogenous L-serine or L-leucine (or both), suggesting that synthesis of these amino acids is limiting. In the absence of isoleucine and valine, however, growth is severely inhibited by both L-serine and L-leucine. A shift to 42 °C or to anaerobiosis makes the mutant auxotrophic for L-serine. Three double mutants carrying and another known mutation, acquire new auxotrophies: , lacking the stringent response to amino acid limitation, requires leucine; with numerous metabolic perturbations and antibiotic resistances, requires serine and leucine; and , lacking pyridine nucleotide transhydrogenase, requires glutamate or aspartate (or the corresponding amides). The mutant, although able to achieve balanced growth in some conditions, is clearly on the edge of a metabolic precipice, unable to tolerate many physiological and genetic perturbations which are inocuous to wild-type .

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-7-1737
1994-07-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/7/mic-140-7-1737.html?itemId=/content/journal/micro/10.1099/13500872-140-7-1737&mimeType=html&fmt=ahah

References

  1. Alfoldi L., Kerekes W. 1964; Neutralization of the amino acid sensitivity of RCrHE. coli . Biochim Biopbys Ada 91:155–157
    [Google Scholar]
  2. Bachmann B.J. 1990; Linkage map of Escherichia coli k-12, edition 8. J Microbiol Her 54:130–197
    [Google Scholar]
  3. Bochner B. R., Huang H. C., Schieven G. L., Ames B. N. 1980; Positive selection for loss of tetracycline resistance. J Bacteriol 143:926–933
    [Google Scholar]
  4. Bouloc P., Vinella D., D’Ari R. 1992; Leucine and serine induce mecillinam resistance in Escherichia coli . Mol and Gen Genet 235:242–246
    [Google Scholar]
  5. Braaten B. A., Platko J. V., van der Woude M. W., Simons B. H., de Graaf F. K., Calvo J. M., Low D. A. 1992; Leucine-responsive regulatory protein controls the expression of both the pap and fan pili operons in Escherichia coli . Proc Natl Acad Sci USA 89:4250–4254
    [Google Scholar]
  6. Cosloy S.D., McFall E. 1970; L-Serine-sensitive mutants of Escherichia coli k-12. J Bacteriol 103:840–841
    [Google Scholar]
  7. Dubrow R., Pizer L. I. 1977; Transient kinetic studies on the allosteric transition of phosphoglycerate dehydrogenase. J Biol Chem 252:1527–1538
    [Google Scholar]
  8. Ernsting B. R., Atkinson M. R., Ninfa A. J., Matthews R. G. 1992; Characterization of the regulon controlled by the Leucine Responsive regulatory protein in Escherichia coli . J Bacteriol 174:1109–1118
    [Google Scholar]
  9. Gerolimatos B., Hanson R. L. 1978; Repression of Escherichia coli pvridine nucleotide transhvdrogenase by leucine. J Bacteriol 134:394–400
    [Google Scholar]
  10. Hama H., Sumita Y., Kakutani Y., Tsuda M., Tsuchiya T. 1990; Target of serine inhibition in Escherichia coli . Biochem Biopbys Res Commun 168:1211–1216
    [Google Scholar]
  11. Haney S. A., Platko J. V., Oxender D. L., Calvo J. M. 1992; Lrp, a leucine-responsive protein regulates branched-chain amino acid transport genes in Escherichia coli . J Bacteriol 174:108–115
    [Google Scholar]
  12. Luchi S., Cameron D. C., Lin E. C. C. 1989; A second global regulator gene (arc B) mediating repression of enzymes in aerobic pathways of Escherichia coli . J Bacteriol 171:868–873
    [Google Scholar]
  13. Kayahara T., Thelen P., Ogawa W., Inaba K., Tsuda M., Goldberg E. B., Tsuchiya T. 1992; Properties of recombinant cells capable of growing on serine without Nha B Na+/H+ antiporter in Escherichia coli . J Bacteriol 174:7482–7485
    [Google Scholar]
  14. Lin R., D'Ari R., Newman E. B. 1990; The leucine regulon of Escherichia coli:. a mutation in rbl A alters expression of L-leucine-dependent metabolic operons. J Bacteriol 172:535
    [Google Scholar]
  15. Lin R., D'Ari R., Newman E. B. 1992; Xp/ac Mu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 174:1948–1955
    [Google Scholar]
  16. Maniatis T., Fritsch E. F., Sambrook J. 1982 In Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Newman E. B., Malik N., Walker C. 1982; l -Serine degradation in Escherichia coli K-12: directly isolated ssd mutants and their intragenic revertants. J Bacteriol 150:710–715
    [Google Scholar]
  19. Newman E. B., D'Ari R., Lin R. 1992; The leucine-Lrp regulon in E. coli: a global response in search of a raison d’etre. Cell 68:617–619
    [Google Scholar]
  20. Newman E. B., Morris J. F., Walker C., Kapoor V. 1981; A mutation affecting L-serine and energy metabolism in Escherichia coli K-12. Mol and Gen Genet 182:143–147
    [Google Scholar]
  21. Platko J.V., Calvo J. M. 1993; Mutations affecting the ability of Escherichia coli Lrp to bind DNA, activate transcription or respond to leucine. J Bacteriol 175:1110 –1117
    [Google Scholar]
  22. Platko J. V., Willins D. A., Calvo J. M. 1990; The ilv IH operon of Escherichia coli is positively regulated. J Bacteriol 172:4563–4570
    [Google Scholar]
  23. Rainwater S., Silverman P. M. 1990; The Cpx proteins of Escherichia coli K-12: evidence that cpx A, ecf B, ssd and eup mutations all identify the same gene. J Bacteriol 172:2456–2461
    [Google Scholar]
  24. Ramotar D., Newman E. B. 1986; An estimate of the extent of deamination of L-serine in auxotrophs of Escherichia coli K-12. Can J Microbiol 32:842–846
    [Google Scholar]
  25. Saier M. H., Reizer J. 1992; Proposed uniform nomenclature for the proteins and protein domains of the bacterial phospho-enolpyruvate: sugar phosphotransferase system. J Bacteriol 174:1433–1438
    [Google Scholar]
  26. Schreiber G., Metzger S., Aizenman E., Roza S., Cashel M., Glaser G. 1991; Overexpression of the rel A gene in Escherichia coli . J Bio and Chem 266:3760–3767
    [Google Scholar]
  27. Shao Z.Q., Newman E. B. 1993; Sequencing and characterization of the sda B gene from Escherichia coli K-12. Eur J Biochem 212:777–784
    [Google Scholar]
  28. Singer M., Baker T. A., Schnitzler J., Deichel S. M., Goel M., Dove W., Jaack K. J., Grossman A. D., Frickson J. W., Gross C. A. 1989; A collection of strains containing genetically linked alternating antibiotic resistance for genetic mapping of Escherichia coli . Microbiol Rev 53:1–24
    [Google Scholar]
  29. Stephens J. C., Artz S. W., Ames B. N. 1975; Guanosine 5'-diphosphate 3'-diphosphate (pp Gpp): positive effector for histidine operon transcription and general signal for amino acid deficiency. Proc Natl Acad Sci USA 72:4389–4393
    [Google Scholar]
  30. Su H., Newman E. B. 1991; A novel L-serine deaminase activity in Escherichia coli K-12. J Bacteriol 173:2473–2480
    [Google Scholar]
  31. Su H., Lang B. F., Newman E. B. 1989; I-Serine degradation in Escherichia coli K-12. Cloning and sequencing of the sda A gene. J Bacteriol 171:5095–5102
    [Google Scholar]
  32. Tobey K.L., Grant G. A. 1986; The nucleotide sequence of the ser A gene of E. coli and sequence of the encoded protein, d-3-phosphoglycerate dehydrogenase. J Biol Chem 261:12179–12183
    [Google Scholar]
  33. Uzan M., Danchin A. 1976; A rapid test for the rel A mutation in E. coli . Biochem Biopbys Res Commun 69:751–758
    [Google Scholar]
  34. Uzan M., Danchin A. 1978; Correlation between the serine sensitivity and the derepressibility of the ilv genes in Escherichia coli relA- mutants. Mol and Gen Genet 165:21–39
    [Google Scholar]
  35. Vinella D., D'Ari R., Bouloc P. 1992; Penicillin binding protein 2 is dispensable in Escherichia coli when pp Gpp synthesis is induced. EMBOJ 11:1493–1501
    [Google Scholar]
  36. Weiss R., Lindsley D., Falahee B., Gallant J. 1988; On the mechanism of ribosomal frameshifting at hungry codons. J Mol Biol 203:403–410
    [Google Scholar]
  37. van der Woude M.W., Braaten B. A., Low D. A. 1992; Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methvlation: model building based on analysis of pap . Mol Microbiol 6:2429–2435
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-7-1737
Loading
/content/journal/micro/10.1099/13500872-140-7-1737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error