The role of cGMP in photosensory and thermosensory transduction in Free

Abstract

Weak and strong light/heat stimuli induced changes in cyclic guanosine monophosphate (cGMP) levels in vegetative and aggregation competent amoebae and in slug cells of the strain X22. Mutant strains derived from X22 with mutations in the phototaxis loci fell into four phenotypic classes with respect to cGMP responses to weak and strong light/heat stimuli. These results suggest an intermediary role for cGMP in photosensory and thermosensory processing in slugs and amoebae. The streamer F mutant NP368 which has previously been shown to exhibit a prolonged cGMP response to cAMP, showed a wild-type cGMP response to light and heat. All phototaxis mutant strains with altered cGMP responses to light and heat were unaltered in their cGMP response to cAMP. These results suggest that cAMP and light/heat regulate cGMP via independent pathways. The thermotaxis mutant HPF228 showed altered cGMP responses to heat but not to light stimuli. This suggests that the mutation in HPF228 affects thermosensory transduction before convergence with the phototaxis pathway and the subsequent cGMP response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-7-1619
1994-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/7/mic-140-7-1619.html?itemId=/content/journal/micro/10.1099/13500872-140-7-1619&mimeType=html&fmt=ahah

References

  1. Aeckerle S., Wurster B., Malchow D. Oscillations and cyclic AMP-induced absence of the K+ concentration in Dictyostelium discoideum. EMBO J 1985; 4:39–43
    [Google Scholar]
  2. Berlot C.M., Devreotes P.N., Spudich J.A. Chemoattractant-elicited increases in Dictyostelium myosin phosphorylation are due to changes in myosin localization and increases in kinase activity. J Biol Chem 1987; 262:3918–3926
    [Google Scholar]
  3. Bumann J., Malchow D., Wurster B. Oscillations of Ca2+ concentration during the cell differentiation of Dictyostelium discoideum. Differentiation 1986; 31:85–91
    [Google Scholar]
  4. Coukell M.B., Cameron A.M. Characterization of revertants of stmF mutants of Dictyostelium discoideum: evidence that stmF is the structural gene of the cGMP-specific phosphodiesterase. Dev Genet 1986; 6:163–177
    [Google Scholar]
  5. Darcy P.K., Wilczynska Z., Fisher P.R. Phototaxis genes on linkage group V in Dictyostelium discoideum. FEMS Microbiol Lett 1993; 111:123–128
    [Google Scholar]
  6. Dicou E., Brachet P. A separate phosphodiesterase for the hydrolysis of cyclic guanosine SA'-monophosphate in growing Dictyostelium discoideum amoebae. Eur J Biochem 1980; 109:507–514
    [Google Scholar]
  7. Van Duijn B., Wang M. Chemoattractant-induced membrane hyperpolarization in Dictyostelium discoideum: a possible role for cyclic GMP. FEBS Lett 1990; 275:201–204
    [Google Scholar]
  8. Europe-Finner G.N., Newell P.C. Inositol 1,4,5-triphosphate induces calcium release from a non-mitochondrial pool in Dictyostelium. Biochim Biophys Acta 1986; 887:335–340
    [Google Scholar]
  9. Europe-Finner G.N., Newell P.C. cAMP stimulates accumulation of inositol triphosphate in Dictyostelium. J Cell Sci 1987; 87:221–229
    [Google Scholar]
  10. Fesenko E.E., Kolesnikov S.S., Cyubarsky A.L. Induction by cGMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 1985; 313:310–313
    [Google Scholar]
  11. Fisher P.R., Williams K.L. Thermotactic behaviour of Dictyostelium discoideum slug phototactic mutants. J Gen Microbiol 1982; 128:965–971
    [Google Scholar]
  12. Fisher P.R., Smith E., Williams K.L. An extracellular chemical signal controlling phototactic behaviour by D. discoideum slugs. Cell 1981; 23:799–807
    [Google Scholar]
  13. Fisher P.R., Dorhmann U., Williams K.L. Signal processing in Dictyostelium discoideum slugs. Mod Cell Biol 1984; 3:97–248
    [Google Scholar]
  14. Van Haastert P.J.M., Van Lookeren Campagne M.M., Ross F.M. Altered cGMP-phosphodiesterase activity in chemotactic mutants of Dictyostelium discoideum. FEBS Lett 1982; 147:149–152
    [Google Scholar]
  15. Van Haastert P.J.M., De Vries M.J., Penning L.C., Roovers E., Van Der Kaay J., Erneux C., Van Lookeren Campagne M.M. Chemoattractant and GTPyS induce the accumulation of inositol 1,4,5-triphosphate in Dictyostelium cells that are labelled with [3H]inositol by electroporation. Biochem J 1989; 258:577–586
    [Google Scholar]
  16. Janssens P.M.W., Van Haastert P.J.M. Molecular basis of transmembrane signal transduction in Dictyostelium discoideum. Microbiol Lev 1987; 51:396–418
    [Google Scholar]
  17. Kesbeke K., Snaar-Jagalska B.E., Van Haastert P.J.M. Signal transduction in Dictyostelium fgdA mutants with a defective interaction between surface cAMP receptor and a GTP binding regulatory protein. J Cell Sci 1988; 96:669–673
    [Google Scholar]
  18. Konijn T.M., Van De Meene J.G.C., Bonner J.T., Barkley D.S. The acrasin activity of adenosine-3'5' cyclic phosphate. Proc Natl Acad Sci USA 1967; 58:1152–1154
    [Google Scholar]
  19. Kumagai A., Pupillo M., Gundersen R., Miake-Lye R., Devreotes P.N., Firtel R.A. Regulation and function of G (alpha) protein subunits in Dictyostelium. Cell 1989; 57:265–275
    [Google Scholar]
  20. Liu G., Newell P.C. Evidence that cyclic GMP regulates myosin interaction with the cytoskeleton during chemotaxis of Dictyostelium. J Cell Sci 1988; 90:123–129
    [Google Scholar]
  21. Loomis W.F. The Development of Dictyostelium discoideum 1982 New York: Academic Press;
    [Google Scholar]
  22. Mato J.M., Krens F.A., Van Haastert P.J.M., Konijn T.M. Cyclic AMP-dependent cGMP accumulation in Dictyostelium discoideum. Proc Natl Acad Sci USA 1977; 74:2348–2351
    [Google Scholar]
  23. Menz S., Bumann J., Jaworski E., Malchow D. Mutant analysis suggests that cyclic GMP mediates the cyclic AMP-induced Ca2+ uptake in Dictyostelium. J Cell Sci 1991; 99:187–191
    [Google Scholar]
  24. Milne J.L., Coukell M.B. A Ca2+ transport system associated with the plasma membrane of Dictyostelium discoideum is activated by different chemoattractant receptors. J Cell Biol 1991; 112:103–110
    [Google Scholar]
  25. Newell P., G, Europe-Finner G.N., Small N.V., Liu G. Inositol phosphates, G-proteins and ras genes involved in chemotactic signal transduction of Dictyostelium discoideum. J Cell Sci 1988; 89:123–127
    [Google Scholar]
  26. Pan P., Hall E.M., Bonner J.J. Determination of the active portion of the folic acid molecule in cellular slime mold chemotaxis. J Bacteriol 1975; 122:185–191
    [Google Scholar]
  27. Ratner D.I., Newell P.C. Linkage analysis in Dictyostelium discoideum using multiply marked tester strains: establishment of linkage group VII and the reassessment of earlier linkage data. J Gen Microbiol 1978; 109:225–236
    [Google Scholar]
  28. Ross F.M., Newell P.G. Streamers: chemotactic mutants of Dictyostelium with altered cyclic GMP metabolism. J Gen Microbiol 1981; 127:339–350
    [Google Scholar]
  29. Small N.V., Europe-Finner G.N., Newell P.G. Calcium induces cyclic GMP formation in Dictyostelium. FEBS Lett 1986; 203:11–14
    [Google Scholar]
  30. Wanner R., Wurster B. Cyclic GMP-activated protein-kinase from Dictyostelium discoideum. Biochim Biophys Acta 1990; 1053:179–184
    [Google Scholar]
  31. Welker D.L., Williams K.L. The assignment of four new loci, including the coumarin sensitivity locus couA, to linkage group VII of Dictyostelium discoideum. J Gen Microbiol 1980; 120:149–159
    [Google Scholar]
  32. Welker D.L., Williams K.L. Translocations in Dictyo-stelium discoideum. Genetics 1985; 109:341–364
    [Google Scholar]
  33. Wick U., Malchow D., Gerisch G. Cyclic AMP-stimulated calcium influx into aggregating cells of Dictyostelium discoideum. Cell Biol Inf Rep 1978; 2:71–79
    [Google Scholar]
  34. Williams K.L., Newell P.G. A genetic study of aggregation in the cellular slime mould Dictyostelium discoideum using complementation analysis. Genetics 1976; 82:287–307
    [Google Scholar]
  35. Wurster B., Schubiger K., Wick U., Gerisch G. Cyclic GMP in Dictyostelium: oscillations and pulses in response to folic acid and cyclic AMP signals. FEBS Lett 1977; 76:141–144
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-7-1619
Loading
/content/journal/micro/10.1099/13500872-140-7-1619
Loading

Data & Media loading...

Most cited Most Cited RSS feed