1887

Abstract

Genes encoding superoxide dismutase (SOD: EC 1·15.1·1) were cloned from NCTC 11351 and UA585 by heterologous complementation of a SOD-deficient mutant. Deletion analysis of the cloned DNA assigned the sod gene to a 1·2 kb insert and this contained an open reading frame of 660 bp. The deduced gene product of 220 amino acids was 71% identical to the iron-containing SOD and 60% identical to the manganese-containing SOD. The recombinant SOD was expressed at high levels in and protected a double mutant from the toxic effects of methyl viologen. Nucleotide sequence analysis of the corresponding gene from showed it to be 92% identical to that from .

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-5-1203
1994-05-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/5/mic-140-5-1203.html?itemId=/content/journal/micro/10.1099/13500872-140-5-1203&mimeType=html&fmt=ahah

References

  1. ACMSF 1993; Advisory Committee on the Microbiological Safety of Foods. Interim report on Campylobacter. HMSO;
    [Google Scholar]
  2. Beauchamp C., Fridovich I. 1971; Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287
    [Google Scholar]
  3. Belland R.J., Trust T. J. 1982; Deoxyribonucleic acid sequence relatedness between thermophilic members of the genus Campylobacter. . J Gen Microbiol 128:2515–2522
    [Google Scholar]
  4. Carlioz A., Touati D. 1986; Isolation of superoxide dismutase mutants in Escherichia coli is superoxide necessary for aerobic life?. EMBO J 5:623–630
    [Google Scholar]
  5. Deveureux J., Haeberli P., Smithies P. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  6. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation.. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  7. Franzon V. L., Arondel J., Sansonetti P. J. 1990; Contribution of superoxide dismutase and catalase activities to Shigella flexneri pathogenesis. Infect Immun 58:529–535
    [Google Scholar]
  8. Fridovich I. 1978; The biology of oxygen radicals. Science 201:875–880
    [Google Scholar]
  9. Fridovich I. 1986; Superoxide dismutases. Adv Enzymol 58:61–97
    [Google Scholar]
  10. Gold L. 1988; Post-transcriptional regulatory mechanisms in Escherichia coli. . Annu Rev Biochem 57:199–233
    [Google Scholar]
  11. Griffiths P.L., Park R. W. A. 1990; Campylobacters associated with human diarrhoeal disease. J Appl Bacteriol 69:281–301
    [Google Scholar]
  12. Haas A., Goebel W. 1992; Microbial strategies to prevent oxygen dependent killing. Free Radical Res Commun 16:137–157
    [Google Scholar]
  13. Hawley D.K., McClure W. R. 1983; Compilation and analysis of Escherichia coli DNA promoter sequences.. Nucleic Acids Res 11:2237–2255
    [Google Scholar]
  14. Hoffman P. S., George H. A., Kreig N. R., Smibert R. M. 1979a; Studies of the microaerophilic nature of Campylobacter fetus subsp. jejuni. I. Physiological aspects of enhanced aerotolerance. Can J Microbiol 25:1–7
    [Google Scholar]
  15. Hoffman P. S., George H. A., Kreig N. R., Smibert R. M. 1979b; Studies of the microaerophilic nature of Campylobacter fetus subsp.jejuni. II. Role of exogenous superoxide anions and hydrogen peroxide. Can J Microbiol 25:8–16
    [Google Scholar]
  16. Jones D. M., Sutcliffe E. M., Rios R., Fox A. J., Curry A. 1993; Campylobacter jejuni adapts to aerobic metabolism in the environment. J Med Microbiol 38:145–150
    [Google Scholar]
  17. Kikuchi H.E., Suzuki T. 1984; An electrophoretic analysis of superoxide dismutase in Campylobacter spp. J Gen Microbiol 130:2791–2796
    [Google Scholar]
  18. Labigne-Roussel A, Courcoux P., Tompkins L. 1988; Gene disruption and replacement as a feasible approach for mutagenesis of Campylobacter jejuni. . J Bacteriol 170:1704–1708
    [Google Scholar]
  19. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  20. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning. A Eaboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Mead D. A., Szcesna-Skorupa E., Kemper B. 1986; Single-stranded ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Engineering 1:67–74
    [Google Scholar]
  22. Parker M.W., Blake C. C. F. 1988; Iron- and manganese- containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett 229:377–382
    [Google Scholar]
  23. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156
    [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  25. Taylor D.E. 1992; Genetics of Campylobacter and Helicobacter. . Annu Rev Microbiol 46:35–64
    [Google Scholar]
  26. Walker R. I., Caldwell M. B., Lee E. C., Guerry P., Trust T. J., Ruiz-Palacios G.M. 1986; Pathophysiology of Campylobacter enteritis. Microbiol Rev 50:81–94
    [Google Scholar]
  27. Zhang Y., Lathigra R., Garbe T., Catty D., Young D. 1991; Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. . Mol Microbiol 5:381–391
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-5-1203
Loading
/content/journal/micro/10.1099/13500872-140-5-1203
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error