1887

Abstract

Various spp. including and secrete indole-3-acetic acid (IAA) when fed with -tryptophan (Trp). Production of IAA was detected in strains causing potato scab as well as in non-pathogenic strains. The pathways for IAA synthesis from Trp were investigated in and . Indole-3-acetamide (IAM), indole-3-lactic acid (ILA), indole-3-ethanol (IEt) and IAA were identified by HPLC and GC-MS. cells were capable of catabolizing IAM, ILA, IEt and indole-3-acetaldehyde (IAAId) into IAA. Incorporation of radioactivity into IAM, IAA and IAL but not IEt was detected when cells were fed with -[3-C]tryptophan. Results indicate the presence of the IAM pathway (Trp → IAM → IAA) and the possible presence of additional pathways for IAA biosynthesis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-5-1045
1994-05-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/5/mic-140-5-1045.html?itemId=/content/journal/micro/10.1099/13500872-140-5-1045&mimeType=html&fmt=ahah

References

  1. Badenoch-Jones J, Summons R. E., Entsch B., Rolfe B. G., Parker C. W., Letham D. S. 1982; Mass spectrometric identification of indole compounds produced by Khizobium strains. Biomed Mass Spectrom 9:429–437
    [Google Scholar]
  2. Barea J.M., Brown M. E. 1974; Effects on plant growth produced by At(Otobacter paspali related to synthesis of plant growth regulating substances. J Appl Bacteriol 37:583–593
    [Google Scholar]
  3. Berry A. M., Kahn R. K. S., Booth M. C. 1989; Identification of indole compounds secreted by Frankia HFP Arl3 in defined culture medium. Plant Soil 118:205–209
    [Google Scholar]
  4. Comai L., Kosuge T. 1983; The genetics of indoleacetic acid production and virulence in Pseudomonas savastanoi.. In Molecular Genetics of the Bacteria-Plant Interactions pp. 33–38 Edited by Puhler A. Berlin: Springer-Verlag;
    [Google Scholar]
  5. Doering-Saad C, Kampfer P., Manulis S., Kritzman G, Schneider J., Zakrzewska-Czerwinska J., Schrempf H., Barash I. 1992; Diversity among Streptomyces strains causing potato scab. Appl Environ Microbiol 58:3932–3940
    [Google Scholar]
  6. Efremenkova O. V., Anisova L. N., Bastoshevich Y. E. 1985; Regulators of differentiation in actinomycetes. Antibiot Med Bio-tekhnol 30:687–707
    [Google Scholar]
  7. Ehmann A. 1977; The Van Urk-Salkowski reagent - a sensitive and specific chromogenic reagent for silica gel thin-layer chromato-graphic detection and identification of indole derivatives. J Chromatogr 132:267–276
    [Google Scholar]
  8. Ek M., Ljungquist P. O., Stenstrom E. 1983; Indole-3-acetic acid production by mycorrhizal fungi determined by gas chromato-graphy-mass spectrometry. New Phytol 94:401–407
    [Google Scholar]
  9. El-Sayed M.A., Valadon L. R. G., El-Shanshoury A. 1987; Biosynthesis and metabolism of indole-3-acetic acid in Streptomyces mutabilis and Streptomyces atroolivaceus.. Microbios Lett 36:85–95
    [Google Scholar]
  10. El-Shanshoury A.R. 1991; Biosynthesis of indole-3-acetic acid in Streptomyces atroolivaceus and its changes during spore germination and mycelial growth. Microbios 67:159–164
    [Google Scholar]
  11. Fett W. F., Osman S. F., Dunn M. F. 1987; Auxin production of plant-pathogenic pseudomonads and xanthomonads.. Appl Environ Microbiol 53:1839–1845
    [Google Scholar]
  12. Gibson R. A., Schneider E. A., Wightman F. 1972; Biosynthesis and metabolism of Indol-3-yl-acetic acid. II. In vivo experiments with 14C-labelled precursors of IAA in tomato and barley shoots. J Exp Bot 23:381–399
    [Google Scholar]
  13. Gruen H.E. 1959; Auxins and fungi. Annu Rev Plant Physiol 10:405–440
    [Google Scholar]
  14. Hirata S. 1959; Studies on the phytohormone in the malformed position of the diseased plants. Bull Miyazaki 5:85–92
    [Google Scholar]
  15. Hooker W.J. 1981; Common scab.. In Compendium of Potato Diseases pp. 33–34 Edited by Hooker W. J. St Paul, MN: American Phytopathological Society;
    [Google Scholar]
  16. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces. A Laboratory Manual. Norwich: John Innes Foundation;
    [Google Scholar]
  17. Iskric S. 1984; Metabolism of indolic compounds in plants. Period Biol 86:153–162
    [Google Scholar]
  18. Kawaguchi M., Fujioka S., Sakurai A., Yamaki Y. T. R., Syono K. 1993; Presence of a pathway for the biosynthesis of auxin via indole-3-acetamide in trifoliata orange. Plant Cell Physiol 34:121–128
    [Google Scholar]
  19. Kosuge T., Palm C. J., Hutcheson S.W., Glass N. L., Yamada T. 1985; pIAAl, a virulence plasmid in Pseudomonas savastanoi.. In Plasmids in Bacteria pp. 807–813 Edited by Helinski D. R., Cohen S. N. , Clewell D. B. , Jackson D. A. , Hollaender A. . New York: Plenum;
    [Google Scholar]
  20. Kundert R., Libbert E. 1972; Interactions between plants and epiphytic bacteria regarding their auxin metabolism. II. Exudation of amino acids and carbohydrates by corn shoots: a nutritive source of epiphytic bacteria. Biochem Physiol Pflans 163:524–535
    [Google Scholar]
  21. Kutacek M., Rovenska J. 1990; Auxin synthesis in Agro-bacterium tumefaciens and in transformed tobacco tissue.. In Molecular Aspects of Hormonal Regulation of Plant Development pp. 111–124 Edited by Kutacek M., Elliott M. C. , Machackova I. . SPB Academic Publishing;
    [Google Scholar]
  22. Lapwood D.H. 1973; Streptomyces scabies and potato scab disease.. In Actinomycetales: Characterisation and Practical Importance pp. 253–260 Edited by Sykes G., Skinner F. A. . London: Academic Press;
    [Google Scholar]
  23. Liv S.T., Perry K. I., Schardi C. I., Kado C. I. 1982; Agrobacterium Ti plasmid indoleacetic gene is required for crown gall oncogenesis. Proc Natl Acad Sci USA 79:2812–2816
    [Google Scholar]
  24. Manulis S., Valinski L., Gafni Y., Hershenhorn J. 1991; Indole-3-acetic acid biosynthetic pathways in Erwinia herbicola in relation to pathogenicity on Gypsophila paniculata.. Physiol Mol Plant Pathol 39:161–171
    [Google Scholar]
  25. Offringa I. A., Melchers L. S., Regenburg-Tuink A. J. G., Costantino P., Schilperoort R. A., Hooykaas P. J. J. 1986; Complementation of Agrobacterium tumefaciens tumor-inducing aux mutant by genes from the Tr-region of the Ri plasmid of Agrobacterium rhispgenes.. Proc Natl Acad Sci USA 83:6935–6939
    [Google Scholar]
  26. Robinnete D., Matthysse A. G. 1990; Inhibition by Agro-bacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. . J Bacteriol 172:5742–5749
    [Google Scholar]
  27. Saotome M., Shirahata K., Nishimura R., Yahaba M., Kawa-guchi M., Syono K., Kitsuwa T., Ishii Y., Nakamura T. 1993; The identification of indole-3-acetic acid and indole-3-acetamide in hypocotyls of Japanese cherry. Plant Cell Physiol 34:157–159
    [Google Scholar]
  28. Sekine M., Ichikawa T., Kuga N., Kobayashi M., Sakurai A., Syono K. 1988; Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhispbium spp. Plant Cell Physiol 29:867–874
    [Google Scholar]
  29. Shinshi H., Mohenen D., Meins F. 1987; Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 84:89–93
    [Google Scholar]
  30. Tien T. M., Gaskins M. H., Hubbell D. H. 1979; Plant growth substances produced by Aspspirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum).. Appl Environ Microbiol 37:1016–1024
    [Google Scholar]
  31. Van Onckelen H., Prinsen E., Inze D., Rudelsheim P., Van Lijsebettens M., Follin A., Scell J., Van Montagu M., De Greef J. 1986; Agrobacterium T-DNA gene 1 codes for tryptophan 2- monooxygenase activity in tobacco crown gall cells. FEBS Lett 198:357–360
    [Google Scholar]
  32. Wichner S., Libbert E. 1968; Interactions between plants and epiphytic bacteria regarding their auxin metabolism I. Detection of IAA-producing epiphytic bacteria and their role in long duration experiments on tryptophan metabolism in plant homogenates. Physiol Plant 21:227–241
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-5-1045
Loading
/content/journal/micro/10.1099/13500872-140-5-1045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error