The high-spin cytochrome o’ component of the cytochrome -type quinol oxidase in membranes from : formation of the primary oxygenated species at low temperatures is characterized by a slow ‘on’ rate and low dissociation constant Free

Abstract

Cytochromes and in membrane vesicles from aerobically grown were readily reduced by succinate; one cytochrome, which we propose should be called cytochrome , reacted with CO in the Fe(ll) state to give a photodissociable CO adduct. The photodissociation spectrum (photolysed pre-photolysis) at sub-zero temperatures had a relatively high γ/α absorbance ratio, indicating a high-spin haem, which, in the reduced state, probably contributes little to the sharp α absorbance of the oxidase complex in membranes. Reaction with oxygen of the unliganded high-spin haem between −132 °C and −95 °C following photolytic activation gave a product that is identified as the oxygenated form, being spectrally similar to, but not identical with, the CO adduct. In membranes, the forward velocity constant at −95 °C was 61 M S, and the dissociation constant was 1·6 × 10 M O, as it is in intact cells. These data clearly distinguish the oxygen-trapping strategy of the cytochrome ' in this oxidase from that of cytochrome and also suggest that the presence of the soluble flavohaemoglobin (Hmp) in intact cells is without effect on such measurements of the primary oxygen reaction. In view of recent findings that this oxidase complex contains predominantly one mole of haem O and one of haem B, a revised nomenclature for the oxidase complex is proposed, namely, cytochrome '.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-5-1027
1994-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/5/mic-140-5-1027.html?itemId=/content/journal/micro/10.1099/13500872-140-5-1027&mimeType=html&fmt=ahah

References

  1. Au D.C.-T., Gennis R. B. 1987; Cloning of the cyo locus encoding the cytochrome o terminal oxidase complex of Escherichia coli.. J Bacteriol 169:3237–3242
    [Google Scholar]
  2. Bolgiano B., Salmon I., Ingledew W. J., Poole R. K. 1991; Redox analysis of the cytochrome o-type quinol oxidase complex of Escherichia coli reveals three redox components. Biochem J 274:723–730
    [Google Scholar]
  3. Bolgiano B., Salmon I., Poole R. K. 1993; Reactions of the membrane-bound cytochrome bo terminal oxidase of Escherichia coli with carbon monoxide and oxygen. Biochim Biophys Acta 1141:95–104
    [Google Scholar]
  4. Castor L.N., Chance B. 1959; Photochemical determinations of the oxidases of bacteria. J Biol Chem 234:1587–1592
    [Google Scholar]
  5. Chance B., Graham N., Legallais V. 1975a; Low temperature trapping method for cytochrome oxidase intermediates. Anal Biochem 67:552–579
    [Google Scholar]
  6. Chance B., Legallais V., Sorge J., Graham N. 1975b; A versatile time-sharing multichannel spectrophotometer, reflectometer and fluorometer. Anal Biochem 67:498–514
    [Google Scholar]
  7. Chepuri V., Lemieux L., Au D.C.-T., Gennis R. B. 1990; The sequence of the cyo operon indicates substantial similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3 type family of cytochrome c oxidases.. J Biol Chem 265:11185–11192
    [Google Scholar]
  8. Ciccognani D. T., Hughes M. N., Poole R. K. 1992; Carbon monoxide-binding properties of the cytochrome ho quinol oxidase complex in Escherichia coli are changed by copper deficiency in continuous culture. FEMS Microbiol Eett 94:1–6
    [Google Scholar]
  9. Edwards C., Beer S., Siviram A., Chance B. 1981; Photo-chemical action spectra of bacterial a- and o-type oxidases using a dye laser. FEBS Lett 128:205–207
    [Google Scholar]
  10. Han S., Ching Y.-C., Rousseau D. L. 1990; Primary intermediate in the reaction of oxygen with fully reduced cytochrome c oxidase. Proc Natl Acad Sci USA 87:2491–2495
    [Google Scholar]
  11. Hata A., Kirino Y., Matsuura K., Itoh S., Hiyama T., Konishi K., Kita K., Anraku Y. 1985; Assignment of ESR signals of Escherichia coli terminal oxidases. Biochim Biophys Acta 810:62–72
    [Google Scholar]
  12. Loannidis N., Cooper C. E., Poole R. K. 1992; Spectroscopic studies on an oxygen-binding haemoglobin-like flavohaemoprotein from Escherichia coli.. Biochem J 288:649–655
    [Google Scholar]
  13. Keilin D. 1966 The History of Cell Respiration and Cytochrome. Cambridge: Cambridge University Press;
    [Google Scholar]
  14. Khosla C., Bailey J. E. 1988; Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli.. Nature 331:633–635
    [Google Scholar]
  15. Kita K., Konishi K., Anraku Y. 1984; Terminal oxidases of Escherichia coli respiratory chain. I. Purification and properties of cytochrome b562-o complex from cells in the early exponential phase of aerobic growth. J Biol Chem 259:3368–3374
    [Google Scholar]
  16. Matsushita K., Patel L., Kaback H. R. 1984; Cytochrome o type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation. Biochemistry 23:4703–4714
    [Google Scholar]
  17. Orii Y., Loannidis N., Poole R. K. 1992; The oxygenated flavohaemoglobin from Escherichia coli: evidence from photo-dissociation and rapid-scan studies for two kinetic and spectral forms. Biochem Biophys Res Commun 187:94–100
    [Google Scholar]
  18. Palmer G., Reedijk J. 1992; Nomenclature Committee of the International Union of Biochemistry (NC-IUB). Nomenclature of electron-transfer proteins. Recommendations 1989. J Biol Chem 267:665–677
    [Google Scholar]
  19. Poole R.K. 1983; Bacterial cytochrome oxidases. A functionally and structurally diverse group of electron-transfer proteins. Biochim Biophys Acta 726:205–243
    [Google Scholar]
  20. Poole R.K. 1988; Bacterial cytochrome oxidases. In Bacterial Energy Transduction pp. 231–291 Edited by Anthony C. London: Academic Press;
    [Google Scholar]
  21. Poole R.K. 1993; The isolation of membranes from bacteria.. In Methods in Molecular Biology Vol. XX Biomemhrane Protocols: Isolation and Analysis. Edited by Graham J. M. Totowa, NJ: Humana Press (in press);
    [Google Scholar]
  22. Poole R.K., Haddock B. A. 1974; Energy-linked reduction of nicotinamide-adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli.. Biochem J 144:77–85
    [Google Scholar]
  23. Poole R.K., Ingledew W. J. 1987; Pathways of electrons to oxygen.. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology 1 pp. 170–200 Edited by Neidhardt F. C., Ingraham J. L. , Low K. B. , Magasanik B., Schaechter M. , Umbarger H. E. . Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Poole R. K., Waring A. J., Chance B. 1979a; Evidence for a functional oxygen-bound intermediate in the reaction of Escherichia coli cytochrome o with oxygen. FEBS Lett 101:56–58
    [Google Scholar]
  25. Poole R. K., Waring A. J., Chance B. 1979b; The reaction of cytochrome o in Escherichia coli with oxygen. Low-temperature kinetic and spectral studies. Biochem J 184:379–389
    [Google Scholar]
  26. Poole R. K., Sivaram A., Salmon I., Chance B. 1982; Photolysis at very low temperatures of CO-liganded cytochrome oxidase (cytochrome d) in oxygen-limited Escherichia coli.. FEBS Lett 141:237–241
    [Google Scholar]
  27. Puustinen A., Wikstrom M. 1991; The heme groups of cytochrome o from Escherichia coli.. Proc Natl Acad Sci USA 88:6122–6126
    [Google Scholar]
  28. Puustinen A., Finel M., Haltia T., Gennis R. B., Wikstrom M. 1991; Properties of the two terminal oxidases of Escherichia coli.. Biochemistry 30:3936–3942
    [Google Scholar]
  29. Puustinen A., Morgan J. E., Verkhovsky M., Thomas J. W., Gennis R. B., Wikstrom M. 1992; The low-spin heme site of cytochrome o from Escherichia coli is promiscuous with respect to heme type. Biochemistry 31:10363–10369
    [Google Scholar]
  30. Salerno J. C., Bolgiano B., Poole R. K., Gennis R. B., Ingledew W. J. 1990; Heme—copper and heme-heme interactions in the cytochrome bo-containing quinol oxidase of Escherichia coli.. J Biol Chem 265:4364–4368
    [Google Scholar]
  31. Saraste M., Holm L, Lemieux L., Luben M., Van der Oost J. 1991; The happy family of cytochrome oxidases. Biochem Soc Trans 19:608–612
    [Google Scholar]
  32. Scott R.I., Poole R. K. 1982; A re-examination of the cytochromes of Escherichia coli using fourth-order finite difference analysis: their characterization under different growth conditions and accumulation during the cell cycle. J Gen Microbiol 128:1685–1696
    [Google Scholar]
  33. Vasudevan S. G., Armarego W. L. F., Shaw D. C., Lilley P. E., Dixon N. E., Poole R. K. 1991; Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli.. Mol and Gen Genet 226:49–58
    [Google Scholar]
  34. Vincent J.-C., Kumar C., Chance B. 1982; Quantitative visible spectroscopy at low temperatures: a systematic examination. Anal Biochem 126:86–93
    [Google Scholar]
  35. Wood P.M. 1984; Bacterial proteins with CO-binding b- or c- type haem. Functions and absorption spectroscopy. Biochim Biophys Acta 768:293–317
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-5-1027
Loading
/content/journal/micro/10.1099/13500872-140-5-1027
Loading

Data & Media loading...

Most cited Most Cited RSS feed