1887

Abstract

Summary: An oligonucleotide that encodes the N-terminal portion of a 41 kDa porin of was used to probe UOC-51 genomic DNA. An 11 kb RI fragment which hybridized with the oligonucleotide was subcloned into , examined for expression, and sequenced. The product expressed by the cloned gene was 40 kDa. The nucleotide sequence has an ORF of 1.13 kb. When the deduced amino acid sequence was aligned and compared to other enterobacterial porins the cloned porin most closely resembled OmpC. Although we did not detect osmoregulation or thermoregulation of any porins in UOC-51, sequences analogous to the osmoregulator OmpR-binding regions are seen upstream to the cloned gene. We examined the regulation of the porin in and found that its expression increased in a high salt environment. A gene, whose transcriptional product functions to inhibit synthesis of OmpF by hybridizing with the transcript, was also seen upstream of the . An alignment with the gene revealed that the functional region of the gene is conserved. Based on the results obtained we have determined that UOC-51 produces a 40 kDa porin similar to the OmpC porin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-2-379
1994-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/2/mic-140-2-379.html?itemId=/content/journal/micro/10.1099/13500872-140-2-379&mimeType=html&fmt=ahah

References

  1. Andersen J., Forst S. A., Zhao K., Inouye M., Delihas N. The function of micF RNA: micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem 1989; 264 17961 17970
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (eds) 1987; Current Protocols in Molecular Biology. New York: John Wiley & Sons;
    [Google Scholar]
  3. Bauer K., Struyvé M., Bosch D., Benz R., Tommassen J. 1989; One single lysine residue is responsible for the special interaction between polyphosphate and the outer membrane porin PhoE of Escherichia coli . J Biol Chem 264 16393 16398
    [Google Scholar]
  4. Bellido F., Martin N. L, Siehnel R. J., Hancock R. E. W. Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability. J Bacteriol 1992; 174 5196 5203
    [Google Scholar]
  5. Benz R., Darveau R. P., Hancock R. E. W. Outer membrane protein PhoE from Escherichia coli forms anion-selective pores in lipid bilayer membranes. Eur J Biochem 1984; 140 319 324
    [Google Scholar]
  6. Burnette W. N. Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 1981; 112 195 203
    [Google Scholar]
  7. Chou J. H., Greenberg J. T., Demple B. Post-transcriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 1993; 175 1026 1031
    [Google Scholar]
  8. Chow J. W., Shlaes D. M. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes . J Antimicrob Chemother 1991; 28 499 504
    [Google Scholar]
  9. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghost R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E coli porins. 1992; 358 727 733
    [Google Scholar]
  10. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rer 1989; 53 121 147
    [Google Scholar]
  11. Fristensky B. Biological Research Computer Heirarchj (BIRCH). User manual Winnipeg: University of Manitoba; 1991
    [Google Scholar]
  12. Gutmann L, Williamson R., Moreau N., Kitzis M. D, Collatz E., Acar J. F., Goldstein F. W. 1985; Cross-resistance to nalidixic acid, trimethoprim, and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella Enterobacter, and Serratia . J Infect Dis 151 501 507
    [Google Scholar]
  13. Hashizume T., Sanada M., Nakagawa S., Tanaka N. Alteration in expression of Serratia marcescens porins associated with decreased outer membrane permeability. J Antimicrob Chemother 1993; 31 21 28
    [Google Scholar]
  14. Hofstra H., van Tol M. J. D., Dankert J. Cross-reactivity of major outer membrane proteins of Entero bacteriaceae: studies by crossed immunoelectrophoresis. J Bacteriol 1980; 143 328 337
    [Google Scholar]
  15. Hutsul J., Worobec E., Parr T. R. Jr, Becker G. W. Comparative analyses of Serratia spp outer membrane porin proteins. Can J Microbiol 1993; 39 442 447
    [Google Scholar]
  16. Inokuchi K., Mutoh N., Matsuyama S., Mizushima S. Primary structure of the ompF gene that codes for a major outer membrane protein of Escherichia coli K-12. Nucleic Acids Res 1982; 10 6957 6968
    [Google Scholar]
  17. Jeanteur D., Lakey J. H., Pattus F. The bacterial porin superfamily: sequence alignment and structure prediction. Mol Microbiol 1991; 5 2153 2164
    [Google Scholar]
  18. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. Electrophoretic resolution of the major outer membrane protein of Escherichia coli K-12 into four bands. FEBS Lett 1975; 58 254 258
    [Google Scholar]
  19. Lundrigan M. D., Earhart C. F. Gene envY of Escherichia coli K-12 affects thermoregulation of major porin expression. J Bacteriol 1984; 157 262 268
    [Google Scholar]
  20. Maeda S., Takayanagi K., Nishimura Y., Maruyama T., Sato K., Mizuno T. Activation of the osmoregulated ompC gene by the OmpR protein in Escherichia coli- a study involving synthetic OmpR-binding sequences. J Biochem 1991; 110 324 327
    [Google Scholar]
  21. Malouin F., Campbell G. D., Halpenny M., Becker G. W., Parr T. R. Jr Outer membrane and porin characteristics of Serratia marcescens grown in vitro and in rat intraperitoneal diffusion chambers. Infect Immun 1990; 58 1247 1253
    [Google Scholar]
  22. Maniatis T., Fritsch E. F., Sambrook J. Molecular Cloning: A Laboratory Manual. 1982 Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Matsuyama S.-l, Mizushima S. 1985; Construction and characterization of a deletion mutant lacking micF, a proposed regulatory gene for OmpF synthesis in Escherichia coli . J Bacteriol 162 1196 1202
    [Google Scholar]
  24. Mitsuyama J., Hiruma R., Yamaguchi A., Sawai T. Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp and their role in outer membrane permeation of β-lactams. Antimicrob Agents Chemother 1987; 31 379 384
    [Google Scholar]
  25. Mizuno T., Chou M.-Y., Inouye M. A comparative study on the genes for three porins of the Escherichia coli outer membrane. J Biol Chem 1983; 258 6932 6940
    [Google Scholar]
  26. Mizuno T., Chou M.-Y., Inouye M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 1984; 81 1966 1970
    [Google Scholar]
  27. Nakae T. Outer membrane of Salmonella isolation of protein complex that produces transmembrane channels. J Biol Chem 1976; 251 2176 2178
    [Google Scholar]
  28. Nikaido H. Porins and specific channels of bacterial outer membranes. Mol Microbiol 1992; 6 435 442
    [Google Scholar]
  29. Nikaido H., Saier M. H. Jr Transport proteins in bacteria: common themes in their design. Science 1992; 258 936 942
    [Google Scholar]
  30. Overbeeke N., Lugtenberg B. Expression of outer membrane protein e of Escherichia coli K12 by phosphate limitation. FEBS Lett 1980; 112 229 232
    [Google Scholar]
  31. Overbeeke N., Bergmans H., van Mansfeld F., Lugtenberg B. Complete nucleotide sequence of phoE, the structural gene for the phosphate limitation inducible outer membrane pore protein of Escherichia coli K12. J Mol Biol 1983; 163 513 532
    [Google Scholar]
  32. Paul C., Rosenbusch J. P. Folding patterns of porin and bacteriorhodopsin. EMBO J 1985; 4 1593 1597
    [Google Scholar]
  33. Puente J. L., Alvarez-Scherer V., Gosset G., Calva E. Comparative analysis of the Salmonella typhi and Escherichia coli ompC genes. Gene 1989; 83 197 206
    [Google Scholar]
  34. Puig M., Fuste C., Vifias M. Outer membrane proteins from Serratia marcescens . Can J Microbiol 1993; 39 108 111
    [Google Scholar]
  35. Reed K. C., Mann D. A. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 1985; 13 7207 7221
    [Google Scholar]
  36. Rosner J. L., Chai T.-J., Foulds J. Regulation of OmpF porin expression by salicylate in Escherichia coli . J Bacteriol 1991; 173 5631 5638
    [Google Scholar]
  37. Sanders C. C. β-Lactamases of Gram-negative bacteria: new challenges for new drugs. Clin Infect Dis 1992; 14 1089 1099
    [Google Scholar]
  38. Sanger F., Niklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74 5463 5467
    [Google Scholar]
  39. Sawai T., Hirano S., Yamaguchi A. Repression of porin synthesis by salicylate in Escherichia coli, Klebsiella pneumoniae and Serratia marcescens . FEMS Microbiol Lett 1987; 40 233 237
    [Google Scholar]
  40. Spierings G., Elders R., van Lith B., Hofstra H., Tommassen J. Characterization of the Salmonella typhimurium phoE gene and development of Salmonella-specific DNA probes. Gene 1992a; 122 45 52
    [Google Scholar]
  41. Spierings G., Ockhuijsen C., Hofstra H., Tommassen i. Characterization of the Citrobacter fruendii phoE gene and development of Cfruendii-specific oligonucleotides. FEMS Microbiol Lett 1992b; 99 199 204
    [Google Scholar]
  42. Struyvé M., Moons M., Tommassen J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 1991; 218 141 148
    [Google Scholar]
  43. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci USA 1979; 76 4350 4354
    [Google Scholar]
  44. Van der Ley P., Bekkers A., van Meersbergen J., Tommassen J. A comparative study of the phoE genes of three enterobacterial species Implications for structure-function relationships in a pore-forming protein of the outer membrane. Eur J Biochem 1987; 164 469 475
    [Google Scholar]
  45. Uemura J., Mizushima S. Isolation of outer membrane proteins of Escherichia coli and their characterization on polyacrylamide gel. Biochim Biophys Acta 1975; 413 163 176
    [Google Scholar]
  46. Waukau J., Forst S. Molecular analysis of the signaling pathway between EnvZ and OmpR in Escherichia coli . J Bacteriol 1992; 174 1522 1527
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-2-379
Loading
/content/journal/micro/10.1099/13500872-140-2-379
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error