1887

Abstract

Summary: The pCloDF13-derived bacteriocin release protein (BRP) is synthesized as a prelipoprotein with a signal peptide which remains stable after processing. This signal peptide accumulates in the cytoplasmic membrane and is, together with the mature BRP, required for efficient release of cloacin DF13. We investigated the structural requirements for stability of the BRP signal peptide by constructing hybrid signal peptides consisting of parts of the BRP and Lpp signal peptides. Signal peptide stability was investigated by pulse-labelling and pulse-chase experiments. To study the functioning of the BRP signal peptide, the hybrid constructs were tested for their ability to promote BRP-mediated cloacin DF13-release and their ability to affect the viability of the host cells. The results obtained suggest that the N-terminal part of the BRP signal peptide together with the C-terminal alanine residue are important for stability. When expressed as a separate entity, all mutant signal peptides that contain a part of the BRP signal peptide are capable of affecting cell viability. The results indicated a possible correlation between stability of the BRP signal peptide and cloacin DF13-release.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-2-369
1994-02-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/2/mic-140-2-369.html?itemId=/content/journal/micro/10.1099/13500872-140-2-369&mimeType=html&fmt=ahah

References

  1. Bergmeyer H. U., Bernt E. Determinations of metabolite concentrations with end point methods. 1983 In Methods of Enzymatic Analysis pp 163 181 Edited by Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7 6727 6738
    [Google Scholar]
  3. Cavard D. Synthesis and functioning of the colicin El lysis protein: comparison with the colicin A lysis protein. J Bacteriol 1991; 173 191 196
    [Google Scholar]
  4. Cavard D., Baty D., Howard S. P., Verhey H. M., Lazdunski C. Lipoprotein nature of the colicin A lysis protein: effect of amino acid substitutions at the site of modification and processing. J Bacteriol 1987; 169 2187 2194
    [Google Scholar]
  5. De Graaf F. K., Oudega B. Production and release of cloacin DF13 and related colicins. Curr Top Microbiol Immunol 1986; 125 183 205
    [Google Scholar]
  6. Dev I. K., Harvey R. J., Ray P. H. Inhibition of prolipoprotein signal peptidase by globomycin. J Biol Chem 1985; 260 5891 5894
    [Google Scholar]
  7. Gennity J. M., Kim H., Inouye M. Structural determinants in addition to the amino-terminal sorting sequence influence membrane localization of Escherichia coli lipoproteins. J Bacteriol 1992; 174 2095 2101
    [Google Scholar]
  8. Howard S. P., Cavard D., Lazdunski C. Phospholipase A-independent damage caused by the colicin A lysis protein during its assembly into the inner and outer membranes of Escherichia coli. J Gen Microbiol 1991; 137 81 89
    [Google Scholar]
  9. Hussain M., Ozawa Y., Ichihara S., Mizushima S. Signal peptide digestion in Escherichia coli Effect of protease inhibitors on hydrolysis of the cleaved signal peptide of the major outer-membrane lipoprotein. Eur J Biochem 1982; 129 223 239
    [Google Scholar]
  10. Joyce C. M., Grindley N. D. F. Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol 1984; 158 636 643
    [Google Scholar]
  11. Klein P., Somorjai R. L., Lau P. C. H. Distinctive properties of signal sequences from bacterial lipoproteins. Protein Engl 1988 15 20
    [Google Scholar]
  12. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 1987; 154 367 382
    [Google Scholar]
  13. Luirink J., Van der Sande C., Tommassen J., Veltkamp E., De Graaf F. K., Oudega B. 1986; Effects of divalent cations and of phospholipase A activity on excretion of cloacin DF13 and lysis of host cells. J Gen Microbiol 132 825 834
    [Google Scholar]
  14. Luirink J., De Graaf F. K., Oudega B. Uncoupling of synthesis and release of cloacin DF13 and its immunity protein by Escherichia coli. Mol & Gen Genet 1987; 206 126 132
    [Google Scholar]
  15. Luirink J., Hayashi S., Wu H. C., Kater M. M., De Graaf F. K., Oudega B. Effect of a mutation preventing lipid modification on the localization of the pCloDF13 encoded bacteriocin release protein and on the release of cloacin DF13. J Bacteriol 1988; 170 4153 4160
    [Google Scholar]
  16. Luirink J, Clark D. M., Ras J., Verschoor E. J., Stegehuis F., De Graaf F. K., Oudega B. pCloDF13 encoded bacteriocin release proteins with shortened carboxyl-terminal segments are lipid modified and processed and function in release of cloacin DF13 and apparent host cell lysis. J Bacteriol 1989; 171 2673 2679
    [Google Scholar]
  17. Luirink J., Duim B., De Gier J. W. L., Oudega B. Functioning of the stable signal peptide of the pCloDF13 encoded bacteriocin release protein. Mol Microbiol 1991; 5 393 399
    [Google Scholar]
  18. Mandel M., Higa A. Calcium dependent bacteriophage DNA infection. J Mol Biol 1970; 53 159 162
    [Google Scholar]
  19. Masui Y., Mizuno T., Inouye M. Novel high level expression cloning vehicles 104-fold amplification of Escherichia coli minor protein. Bio-Technology 1984; 2 81 85
    [Google Scholar]
  20. Messing J. New Ml3 vectors for cloning. Methods Enzymol 1983; 101 20 78
    [Google Scholar]
  21. Miller J. H. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Nakamura K., Inouye M. DNA sequence of the gene for the outer membrane lipoprotein of Escherichia coli: an extremely AT-rich promoter. Cell 1979; 18 1109 1117
    [Google Scholar]
  23. Oudega B., Ykema A., Stegehuis F., De Graaf F. K. Detection and subcellular localization of mature protein H,involved in excretion of cloacin DF13. FEMS Microbiol Eett 1984; 22 101 108
    [Google Scholar]
  24. Pugsley A. P. The ins and outs of colicins I. Production and translocation across membranes. Microbiol Sci 1984; 1 168 175
    [Google Scholar]
  25. Pugsley A. P., Cole S. T. An unmodified form of the ColE2 lysis protein, an envelope lipoprotein, retains reduced ability to promote colicin E2 release and lysis of producing cells. J Gen Microbiol 1987; 133 2411 2420
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. Molecular Cloning: a Laboratory Manual , 2nd edn. 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 1977; 74 5463 5467
    [Google Scholar]
  28. Schägger H., Von Jagow F. A tricine sodium-dodecyl-sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. AnalBiochem 1987; 166 368 379
    [Google Scholar]
  29. Tokunaga H., Wu H. C. Studies on the modification and processing of prolipoprotein in Escherichia coli. J Biol Chetn 1984; 259 6098 6104
    [Google Scholar]
  30. Van der Wal F. J., Oudega B., Kater M. M., Ten Hagen-Jongman C. M., De Graaf F. K., Luirink J. The stable BRP signal peptide causes lethality but is unable to provoke the translocation of cloacin DF13 across the cytoplasmic membrane of Escherichia coli . Mol Microbiol 1992; 6 2309 2318
    [Google Scholar]
  31. Wu H. C., Tokunaga M. Biogenesis of lipoproteins in bacteria. Curr Fop Microbiol Immunol 1986; 125 127 157
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-2-369
Loading
/content/journal/micro/10.1099/13500872-140-2-369
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error