1887
Preview this article:
Zoom in
Zoomout

The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts, Page 1 of 1

| /docserver/preview/fulltext/micro/140/2/mic-140-2-225-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-2-225
1994-02-01
2021-05-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/2/mic-140-2-225.html?itemId=/content/journal/micro/10.1099/13500872-140-2-225&mimeType=html&fmt=ahah

References

  1. Amann R. I., Springer N., Ludwig W., Gortz H. -D., Schleifer K. -H. Identification and in situ phylogeny of uncultured bacterial endosymbionts. Nature 1991; 351161–164
    [Google Scholar]
  2. Berger J, Lynn D. H. Hydrogenosome-methanogen assemblages in the echinoid endocommensal plagiopylid ciliates, Eechriopyla mystax Lynch, 1930 and Plagiopyla minuta Powers, 1933. J ProtoZool (1992); 394–8
    [Google Scholar]
  3. Broers C. A. M., Stumm C. K., Vogels G. D. Axenic cultivation of the anaerobic free-living ciliate Trimyema compressum. J Protocol (1991); 38507–511
    [Google Scholar]
  4. Burggraf S., Stetter K. O., Rouvifere P., Woese C. R. Methanopyrus kandleri an archaeal methanogen unrelated to all other known methanogens. Syst Appl Microbiol (1991); 14346–351
    [Google Scholar]
  5. Cavalier-Smith T. Eukaryotes with no mitochondria. Nature (1987); 326332–333
    [Google Scholar]
  6. Cedergren R., Gray M. W., Abel Y., Sankoff D. The evolutionary relationships among known life forms. J Mol Evol (1988); 2898–112
    [Google Scholar]
  7. Chakrabarti D., Dame J. B., Gutell R. R., Yowell C. A. Characterisation of the rDNA unit and sequence analysis of the small subunit rRNA and 5-8S rRNA genes from Tritrichomonas foetus. Mol Biochem Parasitol (1992); 5275–84
    [Google Scholar]
  8. Corliss J. O. 1979 The Ciliated Protozoa Oxford: Pergamon Press;
    [Google Scholar]
  9. DeLong E. F. Archaea in coastal marine environments. Proc Natl Acad Sci USA (1992); 895685–5689
    [Google Scholar]
  10. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA based probes for the detection of single cells. Science (1989); 2431360–1363
    [Google Scholar]
  11. Embley T. M., Finlay B. J., Thomas R. H., Dyal P. L. The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palae- formis and its archaeobacterial endosymbiont. J Gen Microbiol (1992a); 1381479–1487
    [Google Scholar]
  12. Embley T. M., Finlay B. J., Brown S. RNA sequence analysis shows that the symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen species. FEMS Microbiol Lett (1992b); 9757–62
    [Google Scholar]
  13. Embley T. M., Finlay B. J., Dyal P. Phylogenetic diversity of anaerobic ciliates and their endosymbiotic methanogens. Mol Ecol (1994)
    [Google Scholar]
  14. Esteban G., Guhl B. E., Clarke K. J., Embley T. M., Finlay B. J. Cyclidium porcatum n sp.: a free-living anaerobic scutico- ciliate containing a stable complex of hydrogenosomes eubacteria and archaeobacteria.. Eur J Protistol (1993); 29262–270
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution (1985); 39783–791
    [Google Scholar]
  16. Fenchel T., Finlay B. J. Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol Ecol (1990); 74269–276
    [Google Scholar]
  17. Fenchel T., Finlay B. J. The biology of free-living anaerobic ciliates. Eur J Protistol (1991a); 26201–215
    [Google Scholar]
  18. Fenchel T., Finlay B. J. Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for the growth efficiency of the host. J Protocol (1991b); 3818–22
    [Google Scholar]
  19. Fenchel T., Finlay B. J. Synchronous division of an endosymbiotic methanogenic bacterium in the anaerobic ciliate Plagiopyla frontata Kahl. J Protocol (1991c); 3822–28
    [Google Scholar]
  20. Fenchel T., Finlay B. J. Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol (1992); 157475–480
    [Google Scholar]
  21. Fenchel T., Perry T., Thane A. Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protocol (1977); 24154–163
    [Google Scholar]
  22. Finlay B. J., Fenchel T. Hydrogenosomes in some anaerobic bacteria resemble mitochondria. FEMS MicrobiolEett (1989); 65311–314
    [Google Scholar]
  23. Finlay B. i., Fenchel T. An anaerobic protozoon, with symbiotic methanogens, living in municipal landfill material. FEMS Microbiol Ecol (1991a); 85169–180
    [Google Scholar]
  24. Finlay B. J., Fenchel T. Polymorphic bacterial symbionts in the anaerobic ciliated protozoon Metopus contortus. FEMS Microbiol Eett (1991b); 79187–190
    [Google Scholar]
  25. Finlay B. i., Fenchel T. An anaerobic ciliate as a natural chemostat for the growth of endosymbiotic methanogens. Eur J Protistol (1992a); 28127–137
    [Google Scholar]
  26. Finlay B. J., Fenchel T. Methanogens and other bacteria as symbionts of free-living anaerobic ciliates. Symbiosis (1992b); 14375–390
    [Google Scholar]
  27. Finlay B. J., Embley T. M., Fenchel T. A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. J Gen Microbiol (1993); 139371–378
    [Google Scholar]
  28. Fry N. K., Rowthbottom T. J., Saunders N. A., Embley T. M. Direct amplification and sequencing of the 16S ribosomal DNA of an intracellular Eegionella species recovered by amoebal enrichment from the sputum of a patient with pneumonia. FEMS Microbiol Eett (1991); 83165–168
    [Google Scholar]
  29. Furhman J. A., McCallum K., Davis A. A. Novel major archaebacterial group from marine plankton. Nature (1992); 356148–149
    [Google Scholar]
  30. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature (1990); 34560–63
    [Google Scholar]
  31. Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol (1992); 141233–357
    [Google Scholar]
  32. Gray M. W., Cedergren R., Abel A., Sankoff D. On the evolutionary origin of the plant mitochondrion and its genome. Proc Natl Acad Sci USA (1989); 862267–2271
    [Google Scholar]
  33. Jones W. J., Nagle D. P., Whitman W. B. Methanogens and the diversity of archaebacteria. Microbiol Rev (1987); 51135–177
    [Google Scholar]
  34. Jukes T. H., Cantor C. R. Evolution of protein molecules. In Mammalian Protein Metabolism (1969) Edited by Munro H. N. New York: Academic Press; pp 21–132
    [Google Scholar]
  35. König H., Stetter K. O. Isolation and characterisation of Methanolobus tindarius sp nov. a coccoid methanogen growing only on methanol and methylamines; (1982) Zentralbl Bakteriol Mikrobiol Hyg 1 Abt Orig C 3 478–490
    [Google Scholar]
  36. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. The ribosomal database project. Nucleic Acids Rer (1993); 213021–3023
    [Google Scholar]
  37. Lechner K., Wich G., 8c Bock A. The nucleotide sequence of the 16s rRNA gene and flanking regions from Methanobacterium fortnicicum: on the phylogenetic relationship between methanogenic and halophilic archaebacteria. Syst Appl Microbiol (1985); 6157–163
    [Google Scholar]
  38. Leipe D., Gunderson J. H., Nerad T. A., Sogin M. L. Small subunit RNA of Hexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol (1993); 5941–48
    [Google Scholar]
  39. Lindmark D. G., Müller M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Trichomonas vaginalis, and its role in pyruvate metabolism. J Biol Chem (1973); 2487724–7728
    [Google Scholar]
  40. Margulis L. M. 1993 Symbiosis in CellTvolution, 2nd edn.. Oxford: W. H. Freeman & Co.;
    [Google Scholar]
  41. Marvin-Sikkema F. D., Lahpor G. A., Kraak M. N., Gottschal J. C., Prins R. A. Characterization of an anaerobic fungus from llama faeces. J Gen Microbiol (1992); 1382235–2241
    [Google Scholar]
  42. Milnikov A. P. Diversity of flagellates without mitochondria. In The Biology of Free-Living Heterotrophic Flagellates (1991) Edited by Patterson D. J., Larsen J. Oxford: Clarendon Press; pp 144–158
    [Google Scholar]
  43. Müller M. Energy metabolism in protozoa without mitochondria. Annu Rev Microbiol (1988); 42465–488
    [Google Scholar]
  44. Rouvifere P., Mandelco L., Winker S., Woese C. R. A detailed phylogeny of the Methanomicrobiales. Syst Appl Microbiol (1992); 15363–371
    [Google Scholar]
  45. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (1988); 239487–491
    [Google Scholar]
  46. Saitou N., Nei M. The neighbour joining method: a new method for constructing phylogenetic trees. Mol Biol Evol (1987); 4406–425
    [Google Scholar]
  47. Schopf J. W. The oldest fossils and what they mean. In Major Events in the History of Life (1992) Edited by Schopf J. W. Boston: Jones & Bartlett; pp 29–64
    [Google Scholar]
  48. Sogin M. L., Gunderson J. H., Elwood H. J., Alonso R. A., Peattie D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science (1989); 24375–77
    [Google Scholar]
  49. Sogin M. Early evolution and the origin of eukaryotes. Curr Opin Genet Level (1991); 1457–463
    [Google Scholar]
  50. Stahl D. A., Amann R. I. Development and application of nucleic acid probes in bacterial systematics. In Nucleic Acid Techniques in Bacterial Systematics (1991) Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley; pp 205–248
    [Google Scholar]
  51. Stetter K. O. Methanolobus. In Bergey’s Manual of Systematic Bacteriology (1989)2205–2207 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt j. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  52. Van Bruggen J. J. A., Stumm C. K., Vogels G. D. Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol (1983); 13689–95
    [Google Scholar]
  53. Van Bruggen J. J. A., Zwart K. B., van Assema R. M., Stumm C. K., Vogels G. D. Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol (1984); 1391–7
    [Google Scholar]
  54. Van Bruggen J. J. A., Zwart K. B., Hermans J. G. F., van Hove E. M., Stumm C. K., Vogels G. D. Isolation and characterisation of Methanopianus endosymbiosus sp nov. an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol (1986); 144367–374
    [Google Scholar]
  55. Van Bruggen J. J. A. , van Rens G. L. M., Geertman E. J. M., Zwart K. B., Stumm C. K., Vogels G. D. Isolation of a methanogenic endosymbiont of the sapropelic amoeba Pelomyxa palustris Greef. J Protocol (1988); 3520–23
    [Google Scholar]
  56. Van Keulen H., Guteil R. R., Gates M. A., Campbell S. R., Erlandsen S. L., Jarroll E. L., Kulda J., Meyer E. A. Unique phylogenetic position of diplomonadida based on complete small subunit ribosomal RNA sequence of Giardia ardeae G. muris G. duodenalis and Hexamita sp.. FASEB J (1993); 7223–231
    [Google Scholar]
  57. Vogels G. D., Hoppe W. F., Stumm C. K. Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol (1980); 13689–95
    [Google Scholar]
  58. Vossbrinck C. R., Maddox J. V., Friedman S., , Debrunner-Vossbrinck B. A., Woese C. R. Ribosomal RNA sequences suggests microsporidia are extremely ancient eukaryotes. Nature (1987); 326411–414
    [Google Scholar]
  59. Yang D., Oyaizu Y., Oyaizu H., Olsen G. J., Woese C. R. Mitochondrial origins. Proc Natl Acad Sei USA (1985); 824443–4447
    [Google Scholar]
  60. Yarlett N., Hann A. C., Lloyd D., Williams A. G. Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochem J (1981); 200365–372
    [Google Scholar]
  61. Yarlett N., Lloyd D., Williams A. G. Respiration of the rumen ciliate Dasytricha ruminantium. Biochem J (1982); 206259–266
    [Google Scholar]
  62. Yarlett N., Hann A. C., Lloyd D., Williams A. G. Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis. Comp Biochem Physiol (1983); 74B357–364
    [Google Scholar]
  63. Yarlett N., Coleman G. S., Williams A. G., Lloyd D. Hydrogenosomes in known species of entodiniomorphid protozoa. FEMS Microbiol Lett (1984); 2115–19
    [Google Scholar]
  64. Yarlett N., Orpin C. G., Munn E. A., Greenwood C. A. Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J (1986); 236729–739
    [Google Scholar]
  65. Winker S., Woese C. R. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol (1991); 14305–310
    [Google Scholar]
  66. Woese C. R. Bacterial Evolution. Microbiol Rev (1987); 51221–271
    [Google Scholar]
  67. Woese C. R., Gutell R., Gupta R., Noller H. F. Detailed analysis of the higher order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev (1983); 47621–669
    [Google Scholar]
  68. Woese C. R., Kandier O., Wheelis M. L. Towards a natural system for organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sei USA (1990); 874576–4579
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-2-225
Loading
/content/journal/micro/10.1099/13500872-140-2-225
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error