1887

Abstract

The gene of encodes a periplasmic enzyme which catalyses disulfide bond formation. Analysis of its surrounding DNA region showed that it is preceded by an open reading frame, , of 984 nucleotides. The intergenic region (19 nucleotides) carries no typical transcription termination signals. is transcribed from two promoters, the first (P1) lies in the distal part of , and the second (P2) just upstream from . Using a plasmid-borne :: Tnfusion and an :: ω insertion, each promoter was shown to contribute equally to transcription. The disruption of the single chromosomal copy of by ω more drastically reduced the amount of DsbA in the periplasmic space. Such a reduction of the DsbA pool, however, did not change the activities of the AppA, Agp and PhoA periplasmic phosphatases, which all require disulfide bond formation, even when the enzymes were produced from multicopy recombinant plasmids. Thus, in a wild-type strain, DsbA is far from being in limiting amounts for physiological requirements. The gene product was identified as a weakly expressed 39 kDa cytoplasmic protein, but it is not involved in the overall mechanism of disulfide bond formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-12-3337
1994-12-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/12/mic-140-12-3337.html?itemId=/content/journal/micro/10.1099/13500872-140-12-3337&mimeType=html&fmt=ahah

References

  1. Adhya S., Gottesman M. Control of transcription termination. Annu Rev Biochem 1978; 47:967–996
    [Google Scholar]
  2. Aiba H., Adhya S., de Crombrugghe B. Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 1981; 256:11905–11910
    [Google Scholar]
  3. Akiyama Y., Kamitani S., Kusukawa N., Ito K. In vitro catalysis of oxidative folding of disulfide-bonded proteins by the Escherichia coli dsbA (ppfA) gene product. J Biol Chem 1992; 267:22440–22445
    [Google Scholar]
  4. Bardwell J.C.A., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell 1991; 67:581–589
    [Google Scholar]
  5. Bardwell J.C.A., Lee J.O., Jander G., Martin N., Belin D., Beckwith J. A pathway for disulfide bond formation in vivo. Proc Natl Acad Sei USA 1993; 90:1038–1042
    [Google Scholar]
  6. Barth P.T., Bust C., Hawkins H.C., Freedman R.B. Protein disulphide-isomerase activity in bacterial osmotic shock preparations. Biochem Soc Trans 1988; 16:57
    [Google Scholar]
  7. Belin P., Boquet P.L. A second gene involved in the formation of disulfide bonds in proteins of the Escherichia coli periplasmic space. C R Acad Sei Paris 1993; 316:469–473
    [Google Scholar]
  8. Belin P., Quéméneur E., Boquet P.L. A pleiotropic acid phosphatase-deficient mutant of Escherichia coli shows premature termination in the dsbA gene Use of dsbA: \phoA fusions to localize a structurally important domain in DsbA. Mol & Gen Genet 1994; 242:23–32
    [Google Scholar]
  9. Belyaeva T., Griffiths L., Minchin S., Cole J., Busby S. The Escherichia coli cysG promoter belongs to the ‘extended-10’ class of bacterial promoters. Biochem J 1993; 296:851–857
    [Google Scholar]
  10. Blum H., Beier H., Gross H.J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 1987; 8:93–99
    [Google Scholar]
  11. Boquet P.L., Manoil C., Beckwith J. Use of TnphoA to detect genes for exported proteins in Escherichia coli: identification of the plasmid-encoded gene for a periplasmic acid phosphatase. J Bacterial 1987; 169:1663–1669
    [Google Scholar]
  12. Dailey F.E., Berg H.C. Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sei USA 1993; 90:1043–1047
    [Google Scholar]
  13. Dassa E., Cahu M., Desjoyaux-Cherel B., Boquet P.L. The acid phosphatase with optimum pH of 2-5 of Escherichia coli: physiological and biochemical study. J Biol Chem 1982; 257:6669–6676
    [Google Scholar]
  14. Dessen P., Fondrat C., Valencien C., Mugnier C. bisance: a French service for access to biomolecular sequence databases. Cabios 1990; 6:355–356
    [Google Scholar]
  15. Ebright R.H. Sequence homologies in the DNA of six sites known to bind to the catabolite activator protein of Escherichia coli. In Molecular Structure and Biological Activity 1982 Edited by Griffin J.P., Duax W.L. New York: Elsevier; pp 91–99
    [Google Scholar]
  16. Gay N.J. Construction and characterization of an Escherichia coli strain with a unci mutation. J Bacteriol 1984; 158:820–825
    [Google Scholar]
  17. Gething M.J., Sambrook J. Protein folding in the cell. Nature 1992; 355:33–45
    [Google Scholar]
  18. Goodrich J.A., Schwartz M.L., McClure W.R. Searching for and predicting the activity of sites for DNA binding proteins : compilation and analysis of the binding sites for Escherichia coli integration host factor. Nucleic Acids Res 1990; 18:4993–5000
    [Google Scholar]
  19. Igarashi K., Hanamura A., Makino K., Aiba H., Aiba H., Mizuno T., Nakata A., Ishihama A. Functional map of the a subunit of Escherichia coli RNA polymerase: two modes of transcription activation by positive factors. Proc Natl Acad Sei USA 1991; 88:8958–8962
    [Google Scholar]
  20. Kamitani S., Akiyama Y., Ito K. Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. EMBO J 1992; 11:57–62
    [Google Scholar]
  21. Khalil I., Lepage V., Hors J. Typage HLA de classe II par amplification d’ADN et hybridation avec des oligonucléotides spécifiques. In Amplification Enzymatique de Séquences Nucléotidiques par PCR 1992 Edited by Acuto O., Tosi M. Paris: Editions INSERM; pp 31–38
    [Google Scholar]
  22. Kohara Y., Akiyama Y., Isono K. The physical map of the whole E. coli chromosome. Application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 1987; 50:495–508
    [Google Scholar]
  23. Kumar A., Malloch R.A., Fujita N., Smillie D.A., Ishihama A., Hayward R.S. The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an ‘extended minus 10’ promoter. J Mol Biol 1993; 232:406–418
    [Google Scholar]
  24. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  25. Marck C. ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 1988; 16:1829–1836
    [Google Scholar]
  26. Miller J.H. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Missiakas D., Georgopoulos C., Raina S. Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci USA 1993; 90:7084–7088
    [Google Scholar]
  28. Neu H.C., Heppel L.A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 1965; 240:3685–3692
    [Google Scholar]
  29. Peek J.A., Taylor R.K. Characterization of a periplasmic thiol: disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci USA 1992; 89:6210–6214
    [Google Scholar]
  30. Plunkett G., Burland V., Daniels D.L., Blattner F.R. Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87-2 to 89-2 minutes. Nucleic Acids Res 1993; 21:3391–3398
    [Google Scholar]
  31. Pradel E., Boquet P.L. Acid phosphatases of Escherichia coli: molecular cloning and analysis of agp, the structural gene for a periplasmic acid glucose-1-phosphatase. J Bacteriol 1988; 170:4916–4923
    [Google Scholar]
  32. Prentki P., Krisch H.M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 1984; 29:303–313
    [Google Scholar]
  33. Raibaud O., Schwartz M. Positive control of transcription initiation in bacteria. Annu Rev Genet 1984; 18:173–206
    [Google Scholar]
  34. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Eaboratory Manual 1989 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sancar A., Haok A.M., Rupp W.D. Simple method for identification of plasmid-coded proteins. J Bacteriol 1979; 137:692–693
    [Google Scholar]
  36. Sharp P.M., Li W.-H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987; 15:1281–1295
    [Google Scholar]
  37. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 1974; 71:1342–1346
    [Google Scholar]
  38. Silhavy T.J., Berman M.L., Enquist L.W. Experiments With Gene Fusions 1984 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Takeshita S., Sato M., Masahashi W., Hashimoto-Gotoh T. High-copy-number and low-copy-number plasmid vectors for lacZ complementation and chloramphenicol or kanamycin-resistance selection. Gene 1987; 61:63–74
    [Google Scholar]
  40. Tomb J.F. A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Proc Natl Acad Sci USA 1992; 89:10252–10256
    [Google Scholar]
  41. Wang Q., Calvo J.M. Lrp, a global regulatory protein of Escherichia coli, binds co-operatively to multiple sites and activates transcription of ilvIH. J Mol Biol 1993; 229:306–318
    [Google Scholar]
  42. Wunderlich M., Jaenicke R., Glockshuber R. The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form. J Mol Biol 1993; 233:559–566
    [Google Scholar]
  43. Yang J., Ganesan S., Sarsero J., Pittard A.J. A genetic analysis of various functions of the TyrR protein of Escherichia coli. J Bacteriol 1993; 175:1767–1776
    [Google Scholar]
  44. Yu J., Webb H., Hirst T.R. A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol Microbiol 1992; 6:1949–1958
    [Google Scholar]
  45. Zapun A., Bardwell J.C.A., Creighton T.E. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 1993; 32:5083–5092
    [Google Scholar]
/content/journal/micro/10.1099/13500872-140-12-3337
Loading
/content/journal/micro/10.1099/13500872-140-12-3337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error