1887

Abstract

Biosynthesis of the phytotoxin, tentoxin, its regulation and the enzymic synthesis steps were studied and The physiology of biosynthesis of tentoxin was investigated by using sections of mycelial mats incubated in buffer. Differentiated mycelia could be studied under defined conditions. The synthesis of tentoxin was measured by incorporation of [U-C]leucine into tentoxin. The investigation system was stable for 10 h. Biosynthesis and the growth of biomass started before day 5 of culture, with the maximum between days 9 and 12. After this, biosynthesis quickly declined. pH values about 7 were optimal, and pH values above and below this led to an increased release of tentoxin stored in the cells. The formation of tentoxin by older mycelia was not regulated by acetate, phosphate or glucose, which was not utilized. Precursor amino acids, applied at the start of the culture, slightly activated the synthesis of tentoxin. Older mycelia were inhibited. Substances from the host plant () reduced the synthesis of tentoxin. Enzyme separation studies suggested that biosynthesis of tentoxin involves a multienzyme (≥ 400 kDa), which is a polyfunctional protein without subunits. Experiments suggested that the synthetase contains active SH-groups and an integrated activity of methyltransferase. The precursor amino acids are activated by ATP and bound at the enzyme. -Methylation occurs with the enzyme-bound amino acids or during the elongation of the growing peptide chain. Methionine is the primary donor of the methyl groups, but the immediate methylation reaction needs -adenosyl methionine (SAM). The methylation is essential for the continuation of biosynthesis. The elongation proceeds either stepwise from glycine by binding alanine/methylalanine, phenylalanine/methylphenylalanine and leucine or by formation and linkage of two dipeptides glycine-alanine/methylalanine and phenylalanine/methylphenylalanine-leucine. At the end of this process dihydrotentoxin, the direct precursor of tentoxin, is released from the synthetase probably by cyclization. Independent of this first enzyme, dihydrotentoxin is transformed into tentoxin. This last reaction step is reversible. The rate of transformation of dihydrotentoxin to tentoxin is higher, but in this direction the native turnover is relatively low. The synthesis of tentoxin probably occurs in a manner similar to other well-known cyclic peptides via a ‘thiotemplate mechanism’; the highest enzyme activity occurs between days 9 and 11 of culture at a pH value of 7.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-12-3257
1994-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/12/mic-140-12-3257.html?itemId=/content/journal/micro/10.1099/13500872-140-12-3257&mimeType=html&fmt=ahah

References

  1. Bradford M.M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 1976; 72:248–254
    [Google Scholar]
  2. Brückner B., Hänel I., Hänel F., Tröger R. Einfluβ von Phosphat auf die Bildung von Tentoxin durch Alternaria alternata (Fr) Keissler. Z Allg Mikrobiol 1983; 23:549–556
    [Google Scholar]
  3. Durbin R.D., Uchytil T.F. A survey of plant insensitivity to tentoxin. Phytopathology 1977; 67:602–603
    [Google Scholar]
  4. Edel B., Brückner B., Tröger R. Einfluβ von Phosphat und Inhibitoren auf das Wachstum und die Tentoxinbildung von Alternaria alternata (Fr) Keissler. J Basic Microbiol 1985; 25:155–160
    [Google Scholar]
  5. Gevers W., Kleinkauf H., Lipmann F. The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sei USA 1968; 60:269–276
    [Google Scholar]
  6. Gevers W., Kleinkauf H., Lipmann F. Peptidyl transfers in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc Natl Acad Sei USA 1969; 63:1335–1342
    [Google Scholar]
  7. Grable C.I., Templeton G.E., Meyer W.L. Purification and partial characterization of the chlorosis toxin of Alternaria tenuis. Phytopathology 1966; 56:879
    [Google Scholar]
  8. Hänel I. Untersuchungen %um Phosphat-und Acetateinfluβ auf die Bildung des Phytoeffektors Tentoxin durch Alternaria alternata (Fr.) Keissler 1985 Jena: Dissertation Friedrich-Schiller-Universität;
    [Google Scholar]
  9. Hänel I., Liebermann B., Brückner B., Tröger R. Einfluβ von Acetat auf die Bildung des Phytoeffektors Tentoxin durch Alternaria alternata (Fr) Keissler. J Basic Microbiol 1985; 25:365–371
    [Google Scholar]
  10. Keller U. Actinomycin synthetases. Multifunctional enzymes responsible for the synthesis of the peptide chains of actinomycin. J Biol Chem 1987; 262:5852–5856
    [Google Scholar]
  11. Keller U., Kleinkauf H. Studies of the biosynthesis of actinomycin in protoplasts from Streptomyces antibioticus. Arch Biochem Biophys 1977; 184:111–124
    [Google Scholar]
  12. Kleinkauf H., Von Döhren H. A survey of enzymatic peptide formation. In Peptide Antibiotics-Biosynthesis and Function 1982 Edited by Kleinkauf H. Berlin, New York: Walter de Gruyter; pp 3–21
    [Google Scholar]
  13. Kleinkauf H., Koischwitz H. Peptide bond formation in non-ribosomal systems. In Progress in Molecular andSubcellular Biology VI 1978 Edited by Hahn F.E. Berlin, Heidelberg, New York: Springer Verlag; pp 59–112
    [Google Scholar]
  14. Koncewicz M., Mathiaparanam P., Uchytil T.F., Sparapand L., Tam J., Rich D.H., Durbin R.D. The sequence and optical configuration of amino acids in tentoxin. Biochem Biophys Res Commun 1973; 53:653–658
    [Google Scholar]
  15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  16. Lee J., Agathos S.N. Effect of amino acids on the production of cyclosporin A by Tolypocladium inflatum. Biotechnol Lett 1989; 11:77–82
    [Google Scholar]
  17. Liebermann B. Wirkstoffsynthese durch Alternaria alternata unter besonderer Berücksichtigung cyclischer Peptide 1989 Jena: Friedrich-Schiller-Universität; Dissertation, Promotion B
    [Google Scholar]
  18. Liebermann B., Ihn W. Dihydrotentoxin: a precursor of tentoxin or its degradation product. J Basic Microbiol 1988; 28:63–70
    [Google Scholar]
  19. Liebermann B., Oertel B. Bildung und Isolierung des Phytotoxins Tentoxin aus Alternaria alternata. Z Allg Mikrobiol 1983; 23:503–511
    [Google Scholar]
  20. Liebermann B., Ramm K. N-methylation in the biosynthesis of the phytotoxin tentoxin. Phytochemistry 1991; 30:1815–1817
    [Google Scholar]
  21. Liebermann B., Ihn W., Baumann E., Tresselt D. Dihydrotentoxin and a related dipeptide produced by Alternaria alternata. Phytochemistry 1988; 27:357–359
    [Google Scholar]
  22. Liebermann B., Schuffenhauer S., Ihn W. Biosynthesis of tentoxin and dihydrotentoxin via protein turnover by Alternaria alternata. J Basic Microbiol 1991; 31:51–57
    [Google Scholar]
  23. Liebermann B., Ramm K., Baumann E. Die analytische Erfassung der cyclischen Tetrapeptide Tentoxin und Dihydrotentoxin und deren Bausteine. In Vom Organismus yum Molekül. Physiologische Prozesse 1992 Edited by Dahse I. FriedrichSchiller-Universität Jena: Universitätsverlag Jena; ihre Modellierung und Beeinfluβbarkeit auf verschiedenen Ebenen, pp 336–349
    [Google Scholar]
  24. Van Liempt H. Untersuchungen zur Biosynthese der β-Lactam-Vorstufe δ-(L-α-Aminoadipyl)-L-Cysteinyl-D-Valin 1988 Berlin: Dissertation, Technische Universität;
    [Google Scholar]
  25. Martin J.F., Demain A.L. Control of antibiotic biosynthesis. Microbiol Rev 1980; 44:230–251
    [Google Scholar]
  26. Meyer W.L., Templeton G.E., Grable C.E., Sigel C.W., Jones R., Woodhead S.H., Sauer C. The structure of tentoxin. Tetrahedron Lett 1971; 25:2357–2360
    [Google Scholar]
  27. Mohr B. Chloridbestimmung. In Kurze Anleitung zur Maβanalyse mit besondere Berücksichtigung der Vorschriften des DAB.6 und des Erg-B.6 (15 vervollständigte und erweiterte Auflage). In der Reihe Einleitung in die chemische Analyse Bd. II 1958 Edited by Medicus L., Poethke W. Dresden and Leipzig : Steinkopff; p 341
    [Google Scholar]
  28. Neuhoff V. Micromethods in Molecular Biology 1973 Berlin, HeidelbergNew York: Springer Verlag;85
    [Google Scholar]
  29. Oertel B. Untersuchungen s(ur Physiologie und Kinetik der Tentoxinbildung bei Aiternaria alternata (Nee ex Fr) 1983 Jena: Dissertation, Friedrich-Schiller-Universität;
    [Google Scholar]
  30. Orvehed M., Häggblom P., Söderhäll K. Nitrogen inhibition of mycotoxin production by Alternaría alternata. Appi Environ Microbiol 1988; 54:2361–2364
    [Google Scholar]
  31. Ramm K., Brückner B., Liebermann B. Biosynthesis of the phytotoxin tentoxin. I. Synthesis by protoplasts of Alternaría alternata. Appi Biochem Biotechnol 1994a; 48 (in press)
    [Google Scholar]
  32. Ramm K., Ramm M., Liebermann B., Reuter G. Biosynthesis of phytotoxin tentoxin. II. Cell-free biosynthesis of tentoxin. First evidence on the localization of toxin synthesis in Alternaría alternata. Appi Biochem Biotechnol 1994b; 48 (in press)
    [Google Scholar]
  33. Roskoski R. Jr, Gevers W., Kleinkauf H., Lipmann F. Tyrocidine biosynthesis by three complementary fractions from Bacillus brevis (ATCC 8185). Biochemistry 1970; 9:4839–4845
    [Google Scholar]
  34. Russell D.W. Ninhydrin as a reagent for IV-methylamino acids. J Chromatogr 1960; 4:251–252
    [Google Scholar]
  35. Schadler D.L., Steele J.A., Durbin R.D. Some effects of tentoxin on mature and developing chloroplasts. Mycopathol 1976; 58:101–105
    [Google Scholar]
  36. Sheu J., Talburt D.E. Stimulation of tentoxin synthesis by age-culture filtrates and continued synthesis in the presence of protein inhibitors. Appl Environ Microbiol 1986; 51:368–372
    [Google Scholar]
  37. Steele J.A., Uchytil T.F., Durbin R.D., Bhatnagar P., Rich D.H. Chloroplast coupling factor 1 A species specific receptor for tentoxin. Proc Natl Acad Sci USA 1976; 73:2245–2248
    [Google Scholar]
  38. Templeton G.E. Alternaria toxins related to pathogenesis in plants. In Microbial Toxins 8 1972 Edited by Ciegler A., Kadis S., Ajl S.J. London: Academic Press; pp 169–192
    [Google Scholar]
  39. Woodhead S.H., Templeton G.E., Meyer W.L., Lewis R.B. Procedure for crystallization and further purification of tentoxin. Phytopathology 1975; 65:495–496
    [Google Scholar]
  40. Zhang J., Wolfe S., Demain A.L. Carbon source regulation of ACV-synthetase in Cephalosporium acremonium C-10. Curr Microbiol 1989; 18:361–367
    [Google Scholar]
  41. Zocher R., Salnikow J., Kleinkauf H. Biosynthesis of enniatin B. FEBS Lett 1976; 71:13–17
    [Google Scholar]
  42. Zocher R., Nihira T., Paul E., Madry N., Peeters H., Kleinkauf H., Keller U. Biosynthesis of cyclosporin A: partial purification and properties of a multifunctional enzyme from Tolypocladium inflatum. Biochemistry 1986; 25:550–553
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-12-3257
Loading
/content/journal/micro/10.1099/13500872-140-12-3257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error