1887
Preview this article:
Zoom in
Zoomout

Protein phosphorylation in cyanobacteria, Page 1 of 1

| /docserver/preview/fulltext/micro/140/12/mic-140-12-3207-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-12-3207
1994-12-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/12/mic-140-12-3207.html?itemId=/content/journal/micro/10.1099/13500872-140-12-3207&mimeType=html&fmt=ahah

References

  1. Aiba H., Mizuno T. A novel gene whose expression is regulated by the response-regulator, SphR, in response to phosphate limitation in Synechococcus species PCC7942. Mol Microbiol 1994; 13:25–34
    [Google Scholar]
  2. Aiba H., Nagaya M., Mizuno T. Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC 7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol Microbiol 1993; 8:81–91
    [Google Scholar]
  3. Allen J.F. Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1992; 1098:275–335
    [Google Scholar]
  4. Allen J.F., Sanders C.E., Holmes N.G. Correlation of membrane protein phosphorylation with excitation energy distribution in the cyanobacterium Synechococcus 6301. FEBS Eett 1985; 193:271–275
    [Google Scholar]
  5. Anandan S., Nalty M.S., Snodgrass P., Cogdell D.E., Golden S.S. Identification and cloning of putative two-component system response regulator genes in Synechococcus sp. strain PCC 7942 1993 The Cyanobacterial Workshop Abstracts, 12
    [Google Scholar]
  6. Badger M.R. The C02 concentrating mechanism in aquatic phototrophs. In The Biochemistry of Plants: A Comprehensive Treatise 1987 Edited by Hatch M.D., Boardman K. New York: Photosynthesis Academic Press; 10 pp 219–274
    [Google Scholar]
  7. Bloye S.A., Silman N.J., Mann N.H., Carr N.G. Bicarbonate concentration by Synechocystis PCC6803 : modulation of protein phosphorylation and inorganic carbon transport by glucose. Plant Physiol 1992; 99:601–606
    [Google Scholar]
  8. Chiang G.C., Schaefer M.R., Grossman A.R. Complementation of a red light-indifferent cyanobacterial mutant. Proc Natl Acad Sci USA 1992; 89:9415–9419
    [Google Scholar]
  9. Chitnis P.R., Reilly P.A., Miedel M.C., Nelson N. Structure and targeted mutagenesis of the gene encoding 8-kDa subunit of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 1989; 264:18374–18380
    [Google Scholar]
  10. Falkner G., Falkner R., Schwab A. Bioenergetic characterization of transient state phosphate uptake by the cyanobacterium Anacystis nidulans. Arch Microbiol 1989; 152:353–361
    [Google Scholar]
  11. Forchhammer K., Tandeau de Marsac N. The P. protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bacteriol 1994; 176:84–91
    [Google Scholar]
  12. Grossman A.R., Schaefer M.R., Chiang G.G., Collier J.L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 1993; 57:725–749
    [Google Scholar]
  13. Hagemann M., Golldack D., Biggins J., Erdmann N. Salt-dependent protein phosphorylation in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Eett 1993; 113:205–210
    [Google Scholar]
  14. Harrison M.A. Molecular mechanisms of adaptation in the photosynthetic apparatus 1990 PhD thesis, University of Leeds;
    [Google Scholar]
  15. Holms W.H. The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Regul 1986; 28:69–105
    [Google Scholar]
  16. James C.A., Peace E.A., Evans E.H. Phosphorylation patterns from thylakoid peptides from Synechococcus 7942 under nitrogen repleted and depleted conditions. Biochem Soc Trans 1992; 21:3S
    [Google Scholar]
  17. Jeanjean R., Onana B., Peschek G.A., Joset F. Mutants of the cyanobacterium Synechocystis PCC6803 impaired in respiration and unable to tolerate high salt concentrations. FEMS Microbiol Lett 1990; 68:125–130
    [Google Scholar]
  18. Liang J., Scappino L., Haselkorn R. The pat A gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. Proc Natl Acad Sci USA 1992; 89:5655–5659
    [Google Scholar]
  19. Magasanik B. Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends in Biol Sci 1988; 13:475–479
    [Google Scholar]
  20. Mann N.H., Scanlan D.J. The SphX protein of Synechococcus species PCC 7942 belongs to a family of phosphate binding proteins. Mol Microbiol 1994 (in press)
    [Google Scholar]
  21. Mann N.H., Rippka R., Herdman M. Regulation of protein phosphorylation in the cyanobacterium Anabaena strain PCC 7120. J Gen Microbiol 1991; 137:331–339
    [Google Scholar]
  22. Miller A.G. Inorganic carbon transport and accumulation in cyanobacteria. In Advances in Autotrophic Microbiology and One Carbon Metabolism 1990 Edited by Codd G.A., Dijkhuizen L., Tabita F.R. The Netherlands: Kluwer Academic Publishers; 1 pp 25–33
    [Google Scholar]
  23. Miller A.G., Canvin D.T.xs. Na+-stimulation of photosynthesis in the cyanobacterium Synechococcus UTEX 625 grown on high levels of inorganic carbon. Plant Physiol 1987; 84:118–124
    [Google Scholar]
  24. Miller A.G., Espie G.S., Canvin D.T. Active transport of C02 by the cyanobacterium Synechococcus UTEX 625. Plant Physiol 1988; 86:677–683
    [Google Scholar]
  25. Morgan D.G., Baumgartner J.W., Hazelbauer G.L. Proteins antigenically related to methyl-accepting chemotaxis proteins of Escherichia coli detected in a wide range of bacterial species. J Bacteriol 1993; 175:133–140
    [Google Scholar]
  26. Murakami A., Fujita Y. Regulation of stoichiometry between PSI and PSII in response to light regime for photosynthesis observed with Synechocjstis PCC 6714: relationship between redox state of cytz6-/complex and regulation of PSI formation. Plant Cell Physiol 1993; 34:1175–1180
    [Google Scholar]
  27. Nagaya M., Aiba H., Mizuno T. Cloning of a sensory-kinase-encoding gene that belongs to the two-component regulatory family from the cyanobacterium Sjnechococcus sp PCC7942. Gene 1993; 131:119–124
    [Google Scholar]
  28. Nagaya M., Aiba H., Mizuno T. The sphR product, a two-component system response regulator protein, regulates phosphate assimilation in Sjnechococcus sp. strain PCC 7942 by binding to two sites upstream from the phoA promoter. J Bacteriol 1994; 176:2210–2215
    [Google Scholar]
  29. Parkinson J.S., Kofoid E.C. Communication modules in bacterial signaling proteins. Annu Rev Genet 1992; 26:71–112
    [Google Scholar]
  30. Pierce J., Omata T. Uptake and utilization of inorganic carbon by cyanobacteria. Photosynth Res 1988; 16:141–154
    [Google Scholar]
  31. Potts M., Sun H., Mockaitis K., Kennelly P.J., Reed D., Tonks N.K. A protein-tyrosine/serine phosphatase encoded by the genome of the cyanobacterium Nostoc commune UTEX 584. J Biol Chem 1993; 268:7632–7635
    [Google Scholar]
  32. Race H.L., Gounaris K. Identification of the psbH gene product as a 6 kDa phosphoprotein in the cyanobacterium Synechocjstis 6803. FEBS Lett 1993; 323:35–39
    [Google Scholar]
  33. Rao N.N., Torriani A. Molecular aspects of phosphate transport in Escherichia coli. Mol Microbiol 1990; 4:1083–1090
    [Google Scholar]
  34. Romero J.M., Lara C. Photosynthetic assimilation of NOg by intact cells of the cyanobacterium Anacystis nidulans. Plant Physiol 1987; 83:208–212
    [Google Scholar]
  35. Romero J.M., Lara C., Sivak M.N. Effect of carbon and nitrogen assimilation on chlorophyll fluorescence emission by the cyanobacterium Anacystis nidulans. Physiol Plant 1992; 85:433–438
    [Google Scholar]
  36. Sanders C.E., Allen J.F. The 18. kDa phosphoprotein of the cyanobacterium Sjnechococcus 6301: a component of the phycobilisome. In Progress in Photosynthesis Research 1987 Edited by Biggins J. Dordrecht, The Netherlands: Martinus Nijhoff; 2 pp 761–764
    [Google Scholar]
  37. Sanders C.E., Melis A., Allen I.F. In vivo phosphorylation of proteins in the cyanobacterium Sjnechococcus 6301 after chromatic acclimation to photosystem I or photosystem II light. Biochim Biophys Acta 1989; 976:168–172
    [Google Scholar]
  38. Scanlan D.J., Mann N.H., Carr N.G. The response of the picoplanktonic marine cyanobacterium Sjnechococcus sp. WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Mol Microbiol 1993; 10:181–191
    [Google Scholar]
  39. Schluchter W.M., Bryant D.A. Molecular characterization of ferredoxin-NADP+ oxidoreductase in cyanobacteria: cloning and sequence of the petH gene of Sjnechococcus sp PCC 7002 and studies on the gene product. Biochemistry 1992; 31:3092–3102
    [Google Scholar]
  40. Schmidt-Goff C.M., Federspiel N.A. In vivo and in vitro footprinting of a light-regulated promoter in the cyanobacterium Fremjella diplosiphon. J Bacteriol 1993; 175:1806–1813
    [Google Scholar]
  41. Schubert H., Hagemann M. Salt effects of 77K fluorescence and photosynthesis in the cyanobacterium Synechocjstis sp PCC 6803. FEMS Microbiol Lett 1990; 71:169–172
    [Google Scholar]
  42. Schuster G., Owens G.C., Cohen Y., Ohad I. Thylakoid polypeptide composition and light-independent phosphorylation of the chlorophyll a,b protein in Prochloron, a prokaryote exhibiting oxygenic photosynthesis. Biochim Biophys Acta 1984; 767:596–605
    [Google Scholar]
  43. Shestakov S., Chesnavichene E., Bartsevich V., Elanskaya I. Molecular characterization of genes controlling resistance to herbicides in the cyanobacterium Synechocjstis 6803 1993 The Cyanobacterial Workshop Abstracts, 86
    [Google Scholar]
  44. Sim A.T.R., Mudge L.M. Protein phosphatase activity in cyanobacteria: consequences for microcystin toxicity analysis. Toxicon 1993; 31:1179–1186
    [Google Scholar]
  45. Sobczyk A. Carate'risation d'effecteurs transcriptionnels impliqués dans la regulation de I'adaptation chromatique complémentaire chez cyanobacterie Calothrix PCC 7601 1994 PhD thesis, University of Paris;
    [Google Scholar]
  46. Sobczyk A., Schyns G., Tandeau De Marsac N., Houmard J. Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrix sp. PCC 7601 : DNA-binding proteins and modulation by phosphorylation. EMBO J 1993; 12:997–1004
    [Google Scholar]
  47. Sobczyk A., Bely A., Tandeau De Marsac N., Houmard J. A phosphorylated DNA-binding protein is specific for the red light signal during complementary chromatic adaptation. Mol Microbiol 1994 (in press)
    [Google Scholar]
  48. Stock J.B., Ninfa A.J., Stock A. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53:450–490
    [Google Scholar]
  49. Tandeau De Marsac N., Houmard J. Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 1993; 104:119–190
    [Google Scholar]
  50. Tsinoremas N.F., Castets A.M., Harrison M.A., Allen J.F., Tandeau de Marsac N. Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the glnB gene product. Proc Natl Acad Sci USA 1991; 88:4565–4569
    [Google Scholar]
  51. Wagner F., Gimona M., Ahorn H., Peschek G.A., Falkner G. Isolation and functional reconstitution of a phosphate binding protein of the cyanobacterium Anacystis nidulans induced during phosphate limited growth. J Biol Chem 1994; 269:5509–5511
    [Google Scholar]
  52. Waterbury J.B., Willey J.M., Franks D.G., Valois F.W., Watson S.W. A cyanobacterium capable of swimming motility. Science 1985; 230:74–76
    [Google Scholar]
  53. Wilbanks S.M., Glazer A.N. Rod structure of a phycoerythrin II-containing phycobilisome: I. Organization and sequence of the gene encoding the major phycobiliprotein rod components in the genome of the marine Sjnechococcus sp. WH8020. J Biol Chem 1993; 268:1226–1235
    [Google Scholar]
  54. Zhang C.-C. A gene encoding a protein related to eukaryotic protein kinases from the filamentous heterocystous cyanobacterium Anabaena PCC 7120. Proc Natl Acad Sci USA 1993; 90:11840–11844
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-12-3207
Loading
/content/journal/micro/10.1099/13500872-140-12-3207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error