1887
Preview this article:
Zoom in
Zoomout

Growth and guidance of the fungal hypha, Page 1 of 1

| /docserver/preview/fulltext/micro/140/12/mic-140-12-3193-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-12-3193
1994-12-01
2021-05-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/12/mic-140-12-3193.html?itemId=/content/journal/micro/10.1099/13500872-140-12-3193&mimeType=html&fmt=ahah

References

  1. Alani E., Cao L., Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 1987; 116:541–545
    [Google Scholar]
  2. Anderson J., Soli D.R. Differences in actin localization during bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 1986; 132:2035–2047
    [Google Scholar]
  3. Au-Young J., Robbins P.W. Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression in Saccharomyces cerevisiae. Mol Microbiol 1990; 4:197–207
    [Google Scholar]
  4. Bartnicki-Garcia S., Bracker C.E. Unique properties of chitosomes. In Microbial Cell Wall Synthesis and Autolysis 1984 Edited by Nombela C. Amsterdam: Elsevier Science Publishers; pp 101–112
    [Google Scholar]
  5. Bartnicki-Garcia S., Bracker C.E., Reyes E., Ruiz-Herrera J. Isolation of chitosomes from taxonomically diverse fungi and synthesis of chitin microfibrils in vitro. Exp Mycol 1978; 2:173–192
    [Google Scholar]
  6. Bedlack R.S. Jr, Wei M.-D., Loew L.M. Localized membrane potential depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron 1992; 9:393–403
    [Google Scholar]
  7. Boeke J.D., LaCroute F., Fink G.R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Gen Genet 1984; 197:345–346
    [Google Scholar]
  8. Borg M., Rüchel R. Expression of extracellular proteinase by proteolytic Candida spp. during experimental infection of oral mucosa. Infect Immun 1988; 56:626–631
    [Google Scholar]
  9. Bowen A.R., Chen-Wu J.L., Momany M., Young R., Szaniszlo P.J., Robbins P.W. Classification of fungal chitin synthases. Proc Natl Acad Sei USA 1992; 89:519–523
    [Google Scholar]
  10. Bracker C.E., Ruiz-Herrera J., Bartnicki-Garcia S. Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro. Proc Natl Acad Sei USA 1976; 73:4570–4574
    [Google Scholar]
  11. Brawley S.H., Robinson K.R. Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F-actin in embryogenesis. J Cell 1985; BiollOO:1173–1184
    [Google Scholar]
  12. Buchan A.D.B., Kelly V.A., Kinsman O.S., Gooday G.W., Gow N.A.R. Effect of trifluoperazine on growth, morphogenesis and pathogenicity of Candida albicans. J Med Vet Mycol 1993; 31:427–433
    [Google Scholar]
  13. Bulawa C.E. Genetics and molecular biology of chitin synthesis in fungi. Annu Rev Microbiol 1993; 47:505–534
    [Google Scholar]
  14. Bulawa C.E., Osmond B.C. Chitin synthase I and chitin synthase II are not required for chitin synthesis in vivo in Saccharomyces cerevisiae. Proc Natl Acad Sei USA 1990; 87:7424–7428
    [Google Scholar]
  15. Bulawa C.E., Slater M., Cabib E., Au-Young J., Sburlati A., Adair W.L., Robbins P.W. The S. cerevisiae structural gene chitin synthase is not required for chitin synthesis in vivo. Cell 1986; 46:213–225
    [Google Scholar]
  16. Calderone R.A. Recognition between Candida albicans and host cells. Trends Microbiol 1993; 1:55–58
    [Google Scholar]
  17. Chen-Wu J.L., Zwicker J., Bowen A.R., Robbins P.W. Expression of chitin synthase genes during yeast and hyphal growth phases of Candida albicans. Mol Microbiol 1992; 6:497–502
    [Google Scholar]
  18. Cho C.-W., Harold F.M., Schreurs W.A. Electric and ionic dimensions of apical growth in Achlya hyphae. Exp Mycol 1991; 15:34–43
    [Google Scholar]
  19. Crombie T., Gow N.A.R., Gooday G.W. Influence of applied electrical fields on yeast and hyphal growth of Candida albicans. J Gen Microbiol 1990; 136:311–317
    [Google Scholar]
  20. Cutler J.E. Putative virulence factors of Candida albicans. Annu Rev Microbiol 1991; 45:187–218
    [Google Scholar]
  21. Davenport R.W., Kater S.B. Local increases in intracellular calcium elicit local filopodial responses in helisoma neuronal growth cones. Neuron 1992; 9:405–416
    [Google Scholar]
  22. De Silva L.R., Youatt J., Gooday G.W., Gow N.A.R. Inwardly directed ionic currents of Allomyces macrogynus and other water moulds indicate sites of proton-driven nutrient transport but are incidental to tip growth. Mycol Res 1992; 96:925–931
    [Google Scholar]
  23. De Vries S.C., Wessels J.G.H. Polarized outgrowth of hyphae by constant electrical fields during reversion of Schizophyllum commune protoplasts. Exp Mycol 1982; 6:95–98
    [Google Scholar]
  24. Dicker J.W., Turian G. Calcium deficiencies and apical hyperbranching in wild-type and the ‘frost’ and ‘spray’ morphological mutants of Neurospora crassa. J Gen Microbiol 1990; 136:1413–1420
    [Google Scholar]
  25. Douglas L.J. Mannoprotein adhesins of Candida albicans. In New Strategies in Fungal Disease 1992 Edited by Bennett J.E., Hay R.H., Peterson P.K. Edinburgh: Churchill Livingstone; pp 34–50
    [Google Scholar]
  26. Drubin D.G. Development of cell polarity in budding yeast. Cell 1991; 65:1093–1096
    [Google Scholar]
  27. Fonzi W.A., Irwin M.Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics 1993; 134:717–728
    [Google Scholar]
  28. Gadd G.M. Signal transduction in fungi. In The Growing Fungus 1994 Edited by Gow N.A.R., Gadd G.M. London: Chapman & Hall; pp 183–210
    [Google Scholar]
  29. Garrill A., Lew R.R., Heath I.B. Stretch-activated Ca2+ and Ca2+-activated K+ channels in the hyphal tip plasma membrane of the oomycete Saprolegnia ferax. J Cell Sci 1992; 101:721–730
    [Google Scholar]
  30. Garrill A., Jackson S.L., Lew R.R., Heath I.B. Ion channel activity and tip growth: tip localised stretch-activated channels generate an essential Ca2+ gradient in the oomycete Saprolegnia ferax. Eur J Cell Biol 1993; 60:358–365
    [Google Scholar]
  31. Gimeno C.J., Ljungdahl P.O., Styles C.A., Fink G.R. Unipolar cell divisions in the yeast: cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 1992; 68:1077–1090
    [Google Scholar]
  32. Girbardt M. Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 1969; 67:413–441
    [Google Scholar]
  33. Gooday G.W. An autoradiographic study of hyphal growth of some fungi. J Gen Microbiol 1971; 67:125–133
    [Google Scholar]
  34. Gooday G.W., Gow N.A.R. A model of the hyphal septum of Candida albicans. Exp Mycol 1983; 7:370–373
    [Google Scholar]
  35. Gooday G.W., Gow N.A.R. Shape determination and polarity in fungal cells. In Shape and Form in Plants and Fungi 1994 Edited by Ingham D.S., Hudson A. London: Academic Press; pp 329–344
    [Google Scholar]
  36. Gooday G.W., Trinci A.P.J. Wall structure and biosynthesis in fungi. In The Eukaroyotic Microbial Cell. Society for General Microbiolog)! Symposium 1980 Edited by Gooday G.W., Lloyd D., Trinci A.P.J. Cambridge: Cambridge University Press; 30 pp 207–205
    [Google Scholar]
  37. Gow N.A.R. Transhyphal electrical currents in fungi. J Gen Microbiol 1984; 130:3313–3318
    [Google Scholar]
  38. Gow N.A.R. Polarity and branching in fungi induced by electrical fields. In Spatial Organisation in Eukaryotic Microbes of Special Publications of the Society for General Microbiology 1987 Edited by Poole R.K., Trinci A.P.J. Oxford, UK: IRL Press; 23 pp 25–41
    [Google Scholar]
  39. Gow N.A.R. Biochemical and biophysical aspects of dimorphism in Candida albicans. In Congress of the X International Society for Human and Animal Mycology-ISHAM 1988 Edited by Torres-Rodriguez J.M. Barcelona: J. R. Prous Science; pp 73–77
    [Google Scholar]
  40. Gow N.A.R. Control of the extension of the hyphal apex. Curr Top Med Mycol 1989a; 3:109–152
    [Google Scholar]
  41. Gow N.A.R. The circulating ionic currents of microorganisms. Adv Microb Physiol 1989b; 30:89–123
    [Google Scholar]
  42. Gow N.A.R. Tip growth and polarity. In The Growing Fungus 1994a Edited by Gow N.A.R., Gadd G.M. London: Chapman & Hall; pp 277–299
    [Google Scholar]
  43. Gow N.A.R. Yeast-hyphal dimorphism. In The Growing Fungus 1994b Edited by Gow N.A.R., Gadd G.M. London: Chapman & Hall; pp 403–422
    [Google Scholar]
  44. Gow N.A.R., Fonzi W.A. Gene disruption using the ‘ura-blaster’ protocol. In Molecular Biology of Pathogenic Fungi: A Laboratory Manual 1994 Edited by Maresca B., Kobayashi G. (in press)
    [Google Scholar]
  45. Gow N.A.R., Gooday G.W. Growth kinetics and morphology of colonies of the filamentous form of Candida albicans. J Gen Microbiol 1982a; 128:2187–2198
    [Google Scholar]
  46. Gow N.A.R., Gooday G.W. Vacuolation, branch production and linear growth of Candida albicans. J Gen Microbiol 1982b; 128:2195–2198
    [Google Scholar]
  47. Gow N.A.R., Gooday G.W. A model for the germination and mycelial growth form of Candida albicans. Sabouraudia 1984; 22:137–142
    [Google Scholar]
  48. Gow N.A.R., Gooday G.W. Cytological aspects of dimorphism in Candida albicans. Crit Rep Microbiol 1987a; 15:73–78
    [Google Scholar]
  49. Gow N.A.R., Gooday G.W. Effects of antheridiol on growth, branching and electrical currents of Achlya ambisexualis. J Gen Microbiol 1987b; 133:3531–3535
    [Google Scholar]
  50. Gow N.A.R., Gooday G.W., Newsam R., Gull K. Ultrastructure of the septum of Candida albicans. Curr Microbiol 1980; 4:357–359
    [Google Scholar]
  51. Gow N.A.R., Kropf D.L., Harold F.M. Growing hyphae of Achlya bisexualis generate a longitudinal pH gradient in the surrounding medium. J Gen Microbiol 1984; 130:2967–2974
    [Google Scholar]
  52. Gow N.A.R., Henderson G., Gooday G.W. Cytological interrelationships between the cell cycle and the duplication cycle of Candida albicans. Microbios 1986; 47:97–105
    [Google Scholar]
  53. Gow N.A.R., Miller P.F.P., Gooday G.W. Life at the apex: growth of the hyphal tip. J Chem Technol Biotechnol 1992; 56:217–219
    [Google Scholar]
  54. Gow N.A.R., Swoboda R., Bertram G., Gooday G.W., Brown A.P.J. Key genes in the regulation of dimorphism of Candida albicans. In Dimorphic Fungi in Biology and Medicine 1993 Edited by Vanden Bossche H., Odds F.C., Kerridge D. New York: Plenum Press; pp 61–71
    [Google Scholar]
  55. Gow N.A.R., Perera T.H.S., Sherwood-Higham J., Gooday G.W., Gregory D.W., Marshall D. Investigation of the touch-sensitive responses by hyphae of the human pathogenic fungus Candida albicans. Scanning Microsc 1994a (in press)
    [Google Scholar]
  56. Gow N.A.R., Robbins P.W., Lester J.W., Brown A.P.J., Fonzi W.A., Chapman T., Kinsman O.K. A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism or virulence of Candida albicans. Proc Natl Acad Sei USA 1994b; 91:6216–6220
    [Google Scholar]
  57. Gow N.A.R., Hube B., Bailey D.A., Schofield D.A., Munro C., Swoboda R.K., Bertram G., Westwater C., Broadbent I., Smith R.K., Gooday G.W., Brown A.P.J. Genes associated with dimorphism and virulence of Candida albicans. Can J Bot 1995 (in press)
    [Google Scholar]
  58. Grove S.M., Bracker C.E. Protoplasmic organization of hyphal tips amoung fungi: vesicles and Spitzenkorper. J Bacteriol 1970; 104:989–1009
    [Google Scholar]
  59. Gunderson J.H., Elwood H., Ingold A., Kindle K., Sogin M. Phylogenetic relationships between chlorophytes, cryso-phytes and oomycetes. Proc Natl Acad Sei USA 1987; 84:5823–5827
    [Google Scholar]
  60. Harold F.M. To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol Rep 1990; 54:381–431
    [Google Scholar]
  61. Heath I.B. The roles of actin in tip growth in fungi. Int Rep Cytol 1990; 123:95–127
    [Google Scholar]
  62. Hoch H.C., Staples R.C., Whitehead B., Comeau J., Wolf E.D. Signalling for growth orientation and cell differentiation by surface topography in Uromyces. Science 1987; 235:1659–1662
    [Google Scholar]
  63. Howard R.J. Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sei 1981; 48:89–103
    [Google Scholar]
  64. Howard R.J., Aist J.R. Effects of MBC on hyphal tip organisation, growth and mitosis of Fusarium accuminatum, and their antagonism by DaO. Protoplasma 1977; 92:195–210
    [Google Scholar]
  65. Hube B., Turver C.J., Odds F.C., Eifert H., Boulnois G.L., Köchel H., Rüchel R. Sequence of the Candida albicans gene encoding the secretory aspartate proteinase. J Med Net Mycol 1991; 29:129–132
    [Google Scholar]
  66. Hube B., Monod M., Schofield D.A., Brown A.P.J., Gow N.A.R. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 1994; 14:87–99
    [Google Scholar]
  67. Jackson S.L., Heath I.B. Effects of exogenous calcium ions on tip growth, intracellular Ca2+ concentration, and actin arrays in hyphae of the fungus Saprolegnia ferax. Exp Mycol 1989; 13:1–12
    [Google Scholar]
  68. Jackson S.L., Heath I.B. The dynamic behavior of cytoplasmic F-actin in growing hyphae. Protoplasma 1993a; 173:23–34
    [Google Scholar]
  69. Jackson S.L., Heath I.B. Roles of calcium ions in hyphal tip growth. Microbiol Rep 1993b; 57:367–382
    [Google Scholar]
  70. Jaffe L.F. Electrophoresis along cell membranes. Nature 1977; 265:600–602
    [Google Scholar]
  71. Jaffe L.F., Nuccitelli R. An ultrasensitive vibrating probe for measuring extracellular electrical current. J Cell Biol 1974; 63:614–628
    [Google Scholar]
  72. Johnston G.C., Prendergast J.A., Singer R.A. The Saccharomyces cerevisiae MY02 gene encodes an essential myosin for vectorial transport of vesicles. J Cell Biol 1991; 113:539–551
    [Google Scholar]
  73. Kaur S., Mishra P., Prasad R. Dimorphism-associated changes in intracellular pH of Candida albicans. Biochim Biophys Acta 1988; 972:277–282
    [Google Scholar]
  74. Kropf D.L. Electrophysiological studies of Achlya hyphae: ionic currents studies by intracellular recording potentials. J Cell Biol 1986; 102:1209–1216
    [Google Scholar]
  75. Kropf D.L., Harold F.M. Selective transport of nutrients via the rhizoids of the water mold Blastocladiella emersonii. J Bacteriol 1982; 151:429–437
    [Google Scholar]
  76. Kropf D.L., Lupa M.D., Caldwell J.C., Harold F.M. Cell polarity: endogenous ion currents precede and predict branching in the water mold Achlya. Science 1983; 220:1385–1387
    [Google Scholar]
  77. Kropf D.L., Caldwell J.C., Gow N.A.R., Harold F.M. Transcellular ion currents in the water mould Achlya. Amino acid symport as a mechanism of current entry. J Cell Biol 1984; 99:486–496
    [Google Scholar]
  78. Lever M.C., Robertson B.E.M., Buchan A.D.B., Miller P.M., Gooday G.W. pH and Ca2+ dependent galvanotropism of filamentous fungi: implications and mechanisms. Mycol Res 1994; 98:301–306
    [Google Scholar]
  79. Levina N.N., Lew R.R., Heath I.B. Cytoskeletal organisation of ion channel distribution in the tip-growing organism Saprolegnia ferax. J Cell Sei 1994; 107:127–134
    [Google Scholar]
  80. Lille S.H., Brown S.S. Suppression of a myosin defect by a kinesin-related gene. Nature 1992; 256:358–361
    [Google Scholar]
  81. McGillivray A.M., Gow N.A.R. Applied electrical fields polarise the growth of mycelial fungi. J Gen Microbiol 1986; 132:2515–2525
    [Google Scholar]
  82. McGillivray A.M., Gow N.A.R. The transhyphal electrical current of Neurospora crassa is carried principally by protons. J Gen Microbiol 1987; 133:1875–1881
    [Google Scholar]
  83. Madden K., Costigan C., Snyder M. Cell polarity and morphogenesis in Saccharomyces cerevisiae. Trends Cell Biol 1992; 2:22–29
    [Google Scholar]
  84. Marks J., Hyams J.S. Localization of F-actin through the cell division cycle of Schizosaccharomyces pombe. Ear J Cell Biol 1985; 39:27–32
    [Google Scholar]
  85. Martin M.V., Craig G.T., Lamb D.J. An investigation of the role of true hypha production in the pathogenesis of experimental oral candidosis. J Net Med Mycol 1984; 22:471–476
    [Google Scholar]
  86. Martinez-Cadena G., Ruiz-Herrera J. Activation of chitin synthetase from Phycomyces blakesleeanus by calcium and calmodulin. Arch Microbiol 1987; 148:280–285
    [Google Scholar]
  87. Matthews R.C. Pathogenicity determinants of Candida albicans: potential targets for immunotherapy. Microbiology 1994; 140:1505–1511
    [Google Scholar]
  88. Miyasaki S.H., White T.C., Agabian N. A fourth secreted aspartyl proteinase gene (SAP4) and a CARE2 repetitive element are located upstream of the SAP1 gene in Candida albicans. J Bacteriol 1994; 176:1702–1710
    [Google Scholar]
  89. Monod M., Togni G., Hube B., Sanglard D. Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol 1994; 13:357–368
    [Google Scholar]
  90. Nuccitelli R. Vibrating probe technique for studies of ion transport. In Noninvasive Techniques in Cell Biology 1990 Edited by Foskett J.K., Grinstein S. New York: Wiley-Liss; pp 273–310
    [Google Scholar]
  91. Odds F.C. Morphogenesis in Candida albicans. Crit Rev Microbiol 1985; 12:45–93
    [Google Scholar]
  92. Odds F.C. Candida and Candidosis 1988 London: Balliere Tindall;
    [Google Scholar]
  93. Odds F.C. Candida species and virulence. ASM News 1994; 60:313–318
    [Google Scholar]
  94. Onuma E.K., Hui S.-W. Electric-field directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J Cell Biol 1988; 106:2067–2075
    [Google Scholar]
  95. Orida N., Poo M.-M. Electrophoretic movement and localization of acetylcholine receptors in the embryonic muscle cell membrane. Nature 1978; 275:31–35
    [Google Scholar]
  96. Poo M.-M. In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng 1981; 10:245–276
    [Google Scholar]
  97. Prosser J.I. Kinetics of filamentous growth and branching. In The Growing Eungus 1994 Edited by Gow N.A.R., Gadd G.M. London: Chapman & Hall; pp 301–318
    [Google Scholar]
  98. Rajnicek A.M., McCaig C.D., Gow N.A.R. Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth. J Bacteriol 1994; 176:702–713
    [Google Scholar]
  99. Read N.D., Kellock L.J., Knight H., Trewavas A.J. Contact sensing during infection by fungal pathogens. In Perspective in Plant Cell Recognition 1992 Edited by Callow J.A., Green J.R. Cambridge: Cambridge University Press; pp 137–172
    [Google Scholar]
  100. Robertson N.F. Experimental control of hyphal branching forms in hyphomycetous fungi. J Linn Soc Lond 1959; 56:207–211
    [Google Scholar]
  101. Robinson K.R. The responses of cells to electrical fields: a review. J Cell Biol 1985; 101:2023–2027
    [Google Scholar]
  102. Robson G.D., Wiebe M.G., Trinci A.P.J. Involvement of Ca2+ in the regulation of hyphal extension and branching in Fusarium graminearum A3/5. Exp Mycol 1991; 15:263–272
    [Google Scholar]
  103. Ryley J.F., Ryley N.G. Candida albicans-do mycelia matter. J Med Net Mycol 1990; 28:225–239
    [Google Scholar]
  104. Sabie F.T., Gadd G.M. Involvement of a Ca2+-calmodulin interaction in the yeast-mycelial transition of Candida albicans. Mycopathologia 1989; 108:47–54
    [Google Scholar]
  105. Santos A.S., Keith G., Tuite M.F. Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5'-CAG-3' (leucine) anticodon. EMBO 1993; J12:607–616
    [Google Scholar]
  106. Schmid J., Harold F.M. Dual role for calcium ions in apical growth of Neurospora crassa. J Gen Microbiol 1988; 134:2623–2631
    [Google Scholar]
  107. Schofield D.A. Regulation of chitin synthesis in Candida albicans 1994 PhD thesis, University of Aberdeen, UK;
    [Google Scholar]
  108. Schreurs W.J.A., Harold F.M. Transcellular proton current in Achlya bisexualis hyphae: relationship to polarized growth. Proc Natl Acad Sei USA 1988; 85:1534–1538
    [Google Scholar]
  109. Schreurs W.J.A., Harold R.L., Harold F.M. Chemotropism and branching as alternative responses of Achlya bisexualis. J Gen Microbiol 1989; 135:2519–2528
    [Google Scholar]
  110. Shepherd M.G. Pathogenicity of morphological and auxotrophic mutants of Candida albicans in experimental infections. Infect Immun 1985; 50:541–544
    [Google Scholar]
  111. Sherwood J., Gow N.A.R., Gooday G.W., Gregory G.W., Marshall D. Contact sensing in Candida albicans: a possible aid to epithelial penetration. J Med Net Mycol 1992; 30:461–469
    [Google Scholar]
  112. Sherwood-Higham J., Zhu W.-Y., Devine C.A., Gooday G.W., Gow N.A.R., Gregory G.W. Helical hyphae of Candida albicans. J Med Net Mycol 1994 (in press)
    [Google Scholar]
  113. Simonetti N., Strippoli V. Pathogenicity of the Y form as compared to M form in experimentally induced Candida albicans infections. Mycopathol Mycol Appl 1973; 51:19–28
    [Google Scholar]
  114. Snyder M. The SPA2 protein of yeast localizes to sites of cell growth. J Cell Biol 1989; 108:1419–1429
    [Google Scholar]
  115. Sobel J.D., Muller G., Buckley H.R. Critical role of germ tube formation in the pathogenesis of Candida vaginitis. Infect Immun 1984; 44:576–580
    [Google Scholar]
  116. Soll D.R. High-frequency switching in Candida albicans. Clin Microbiol Rev 1992; 5:183–203
    [Google Scholar]
  117. Stewart E., Gow N.A.R., Bowen D.V. Cytoplasmic alkalinization during germ tube formation in Candida albicans. J Gen Microbiol 1988; 134:1079–1087
    [Google Scholar]
  118. Stewart E., Hawser S., Gow N.A.R. Changes in internal and external pH accompany growth of Candida albicans: studies of non-dimorphic variants. Arch Microbiol 1989; 151:149–153
    [Google Scholar]
  119. Stollberg J., Fraser S.E. Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion and aggregation. J Cell Biol 1988; 107:1397–1408
    [Google Scholar]
  120. Stump R.F., Robinson K.R., Harold R.L., Harold F.M. Endogenous electrical currents in the water mould Blastocladiella emersonii during growth and sporulation. Proc Natl Acad Sei USA 1980; 77:6673–6677
    [Google Scholar]
  121. Sudoh M., Nagahashi S., Doi M., Ohta A., Takagi M., Arisawa M. Cloning of the chitin synthase 3 gene from Candida albicans and its expression during yeast-hyphal transition. Mol & Gen Genet 1993; 241:351–358
    [Google Scholar]
  122. Swoboda R.K., Bertram G., Hollander D., Greenspan D., Greenspan J.S., Gow N.A.R., Gooday G.W., Brown A.J.P. Glycolytic enzymes of Candida albicans are nonubiquitous immunogens during candidiasis. Infect Immun 1993; 61:4263–4271
    [Google Scholar]
  123. Swoboda R.K., Bertram G., Delbruck S., Ernst J.F., Gow N.A.R., Gooday G.W., Brown A.J.P. Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect changes in growth and are not a response to cellular dimorphism. Mol Microbiol 1994a; 13:663–672
    [Google Scholar]
  124. Swoboda R.K., Bertram G., Colthurst D.R., Tuite M.F., Gow N.A.R., Gooday G.W., Brown A.J.P. Regulation of the genes encoding translation elongation factor 3 during growth and morphogenesis in Candida albicans. Microbiology 1994b; 140:2611–2616
    [Google Scholar]
  125. Takeuchi Y., Schmid J., Caldwell J.H., Harold F.M. Transcellular ion currents and extension of Neurospora crassa hyphae. J Membr Biol 1988; 101:33–41
    [Google Scholar]
  126. Van Laere A. Effect of electrical fields on polar growth of Phycomyces blakesleeanus. FEMS Microbiol Eett 1988; 49:111–116
    [Google Scholar]
  127. Wessels J.G.H. Cell wall synthesis in apical hyphal growth. Ini Rev Cytol 1986; 104:37–79
    [Google Scholar]
  128. Wessels J.G.H. Wall growth, protein excretion and morphogenesis in fungi. New Phytol 1993; 123:387–413
    [Google Scholar]
  129. White T., Miyasaki S.H., Agabian N. Three distinct secreted aspartyl proteinases in Candida albicans. J Bacteriol 1993; 175:6126–6133
    [Google Scholar]
  130. Wittekindt E., Lamprecht I., Kraepelin G. DC electrical fields induce polarization effects in the dimorphic fungus Mycotypha africana. Endocytobiosis Cell Res 1989; 6:41–56
    [Google Scholar]
  131. Wright R.J., Carne A., Hieber A.D., Lamont I.L., Emerson G.W., Sullivan P.A. Two genes for secreted aspartate proteinase in Candida albicans. J Bacteriol 1992; 174:7848–7853
    [Google Scholar]
  132. Wynn W.K. Tropic and taxic responses of pathogens to plants. Annu Rev Phytopathol 1981; 19:237–255
    [Google Scholar]
  133. Youatt J., Gow N.A.R., Gooday G.W. Bioelectric and biosynthetic aspects of cell polarity in Allomyces macrogynus. Protoplasma 1988; 146:118–126
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-12-3193
Loading
/content/journal/micro/10.1099/13500872-140-12-3193
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error