1887

Abstract

bIL67 is a broad-host-range prolate-headed phage that is active against cells. The complete phage genome sequence of 22195 bp was established. Thirty-seven open reading frames (ORFs) organized in two clusters were identified. Functions were assigned to the putative products of six of the ORFs on the basis of comparison of the deduced amino acid sequences to known proteins, analysis of structural features of the proteins and search for conserved motifs. These were a DNA polymerase, a protein involved in recombination, a lysin, a terminase subunit, a structural protein and a holin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-11-3061
1994-11-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/11/mic-140-11-3061.html?itemId=/content/journal/micro/10.1099/13500872-140-11-3061&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mot Biol 1990; 215:403–410
    [Google Scholar]
  2. Anderson S. Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res 1981; 9:3015–3027
    [Google Scholar]
  3. Arendt E.K., Daly C., Fitzgerald G.F., van de Guchte M. Molecular characterization of lactococcal bacteriophage Tue 2009, identification and analysis of genes encoding lysin, a putative holin and two structural proteins. Appl Environ Microbiol 1994; 60:1875–1883
    [Google Scholar]
  4. Belin D., Hedgpeth J., Selzer G.B., Epstein R.H. emperature-sensitive mutation in the initiation codon of the rIIB gene of bacteriophage T4. Proc Natl Acad Sci USA 1979; 76:700–704
    [Google Scholar]
  5. Beresford T. P. J., Ward L.J.H., Jarvis A.W. Temporally regulated transcriptional expression of the genomes of lactococcal bacteriophages c2 and sk1. Appl Environ Microbiol 1993; 59:3708–3712
    [Google Scholar]
  6. Billard P., Perrin R., Branlant C. Nucleotide sequence at the extremities of the linear genomic DNA of Lactococcus lactis bacteriophages 1992 Poster presented at the CBL meeting in Nancy, France, 2-4 Sept. 1992.
    [Google Scholar]
  7. Black L.W. DNA packaging in dsDNA bacteriophages. In The Bacteriophages 1988 Edited by Calendar R. New York and London: Plenum Press; 2 pp 321–373
    [Google Scholar]
  8. Blanco L., Bernad A., Blasco M.A., Salas M. A general structure for DNA-dependent DNA polymerases. Gene 1991; 100:27–38
    [Google Scholar]
  9. Blanco L., Bernad A., Salas M. Evidence favouring the hypothesis of a conserved 3′-5′ exonuclease active site in DNA- dependent DNA polymerases. Gene 1992; 112:139–144
    [Google Scholar]
  10. Bläsi U., Chang C.Y., Zagotta M.T., Nam K., Young R. The lethal λ S gene encodes its own inhibitor. EMBO J 1990; 9:981–989
    [Google Scholar]
  11. Borodovsky M., Mclninch J. Genmark: parallel gene recognition for both DNA strands. Comput & Chem 1993; 17:123–133
    [Google Scholar]
  12. Brenner S. Phosphotransferase sequence homology. Nature 1987; 329:21
    [Google Scholar]
  13. Burland V., Plunkett G., Daniels D.L., Blattner F.R. DNA sequence and analysis of 136 kilobases of the Escherichia coli genome : organizational symmetry around the origin of replication. Genomics 1993; 16:551–561
    [Google Scholar]
  14. Campbell A., Botstein D. Evolution of the lambdoid phages. In Lambda II 1983 Edited by Hendrix R.W., Roberts J.W., Stahl F.W., Weisberg R.A. Cold Spring Harbor, NY : Cold Spring Harbor Laboratory; pp 365–380
    [Google Scholar]
  15. Chandry P.S., Moore S.C., Davidson B.E., Hillier A.J. Analysis of the cos region of the Lactococcus lactis bacteriophage ski. Gene 1994; 138:123–126
    [Google Scholar]
  16. Chopin A., Chopin M.C., Moillo-Batt A., Langella P. Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 1984; 11:260–263
    [Google Scholar]
  17. Chung D.K., Kim J.H., Batt C.A. Cloning and nucleotide sequence of the major capsid protein from Lactococcus lactis ssp. cremoris bacteriophage F4-1. Gene 1991; 101:121–125
    [Google Scholar]
  18. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12:387–395
    [Google Scholar]
  19. Donate L.E., Valpuesta J.M., Mier C., Rojo F., Carrascosa J.L. Characterization of an RNA-binding domain in the bacteriophage ϕ29 connector. J Biol Chem 1993; 268:20198–20204
    [Google Scholar]
  20. Dower W.J., Miller J.F., Ragsdale C.W. High efficiency transformation of E. coli by high voltage electroporations. Nucleic Acids Res 1988; 16:6127–6145
    [Google Scholar]
  21. Dunn J.J., Studier F.W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 1983; 166:477–535
    [Google Scholar]
  22. Gautier M., Chopin M.C. Plasmid-determined systems for restriction and modification activity and abortive infection in Streptococcus cremoris. Appl Environ Microbiol 1987; 53:923–927
    [Google Scholar]
  23. Geis A. Cloning and DNA sequence analysis of a lysin gene of the lactococcal bacteriophage P001. In Annual Report 1991 1992 p B94 Kiel, Germany: Federal Dairy Research Centre;
    [Google Scholar]
  24. van de Guchte M., Daly C., Fitzgerald G.F., Arendt E.K. Identification of the putative repressor-encoding gene cl of the temperate lactococcal bacteriophage Tuc 2009. Gene 1994; 144:93–95
    [Google Scholar]
  25. Hill C., Miller L.A., Klaenhammer T.R. Cloning, expression and sequence determination of a bacteriophage fragment encoding bacteriophage resistance in Lactococcus lactis. J Bacteriol 1990; 172:6419–6426
    [Google Scholar]
  26. Hill C., Miller L.A., Klaenhammer T.R. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J Bacteriol 1991; 173:4363–4370
    [Google Scholar]
  27. Jarvis A.W., Meyer J. Electron microscopic heteroduplex study and restriction endonuclease cleavage analysis of the DNA genomes of three lactic streptococcal bacteriophages. Appl Environ Microbiol 1986; 51:566–571
    [Google Scholar]
  28. Jarvis A.W., Fitzgerald G.F., Mata M., Mercenier A., Neve H., Powell I.B., Ronda G., Saxelin M., Teuber M. Species and type phages of lactococcal bacteriophages. Intervirology 1991; 32:2–9
    [Google Scholar]
  29. Kilpper-Bälz R., Fisher G., Schleifer K.H. Nucleic acid hybridization of group N and group D streptococci. Curr Microbiol 1982; 7:245–250
    [Google Scholar]
  30. Kim J.H., Batt G.A. Nucleotide sequence and deletion analysis of a gene coding for a structural protein of Lactococcus lactis bacteriophage F4-1. Food Microbiol 1991; 8:27–36
    [Google Scholar]
  31. Kumar A., Malloch R.A., Fujita N., Smillie D.A., Ishihama A., Hayward R.S. The -35-recognition region of Escherichia coli ϕ70is inessential for initiation of transcription at an ‘extended —10’ promoter. J Mol Biol 1993; 232:406–418
    [Google Scholar]
  32. Lakshmidevi G., Davidson B.E., Hillier A.J. Molecular characterization of promoters of the Lactococcus lactis ssp. cremoris temperate bacteriophage BK5-T and identification of a phage gene implicated in the regulation of promoter activity. . Appl Environ Microbiol 1990; 56:934–942
    [Google Scholar]
  33. Letellier L., Labedan B. Release of respiratory in Escherichia coli after bacteriophage adsorption: process independent of DNA injection. J Bacteriol 1985; 161:179–182
    [Google Scholar]
  34. Lillehaug D., Birkeland N.-K. Characterization of genetic elements required for site-specific integration of the temperate lactococcal bacteriophage ϕLC3 and construction of integrationnegative ϕLC3 mutants. J Bacteriol 1993; 175:1745–1755
    [Google Scholar]
  35. Loof M., Teuber M. Heteroduplex analysis of the genomes of Streptococcus lactis ‘subsp. diacetylactis’ bacteriophages of the P008-type isolated from German cheese factories. Syst Appl Microbiol 1986; 8:226–229
    [Google Scholar]
  36. Ludwig W., Seewaldt E., Klipper-Bälz R., Schleiffer K.H., Magrum L., Woese C.R., Fox G.E., Stackebrandt E. The phylogenetic position of Streptococcus and Enterococcus. J Gen Microbiol 1985; 131:543–551
    [Google Scholar]
  37. Miller J. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Nakayama S., Moncrief N.D., Kretsinger R.H. Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories.. J Mol Evol 1992; 34:416–448
    [Google Scholar]
  39. Ogasawara N., Nakai S., Yoshikawa H. Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res 1994; 1:1–14
    [Google Scholar]
  40. Paces V., Vlcek C., Urbanek P. Nucleotide sequence of the late region of Bacillus subtilis phage PZA, a close relative of phi-29. Gene 1986; 44:107–114
    [Google Scholar]
  41. Pearson W.R., Lipman D.J. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 1988; 85:2444–2448
    [Google Scholar]
  42. Platteeuw C., de Vos W.M. Location, characterization and expression of lytic enzyme-encoding gene, lytA, of Lactococcus lactis bacteriophage ϕUS3. Gene 1992; 118:115–120
    [Google Scholar]
  43. Poteete A.R. Location and sequence of the erf gene of phage P22. Virology 1982; 119:422–429
    [Google Scholar]
  44. Poteete A.R., Fenton A.C. λ Red-dependent growth and recombination of phage P22. Virology 1984; 134:37–49
    [Google Scholar]
  45. Poteete A.R., Fenton A.C., Semerjian A.V. Bacteria phage P22 accessory recombination function. Virology 1991; 182:316–323
    [Google Scholar]
  46. Potter N.N. Host-induced changes in lactic streptococcal bacteriophages. J Dairy Sci 1970; 53:1358–1362
    [Google Scholar]
  47. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Schouler C., Bouet G., Ritzenthaler P., Drouet X., Mata M. Characterization of Lactococcus lactis phage antigens. Appl Environ Microbiol 1992; 58:2479–2484
    [Google Scholar]
  49. Schuler G.D., Altschul S.F., Lipman D.J. A workbench for multiple alignment construction and analysis. Proteins Struct Funct Genet 1991; 9:180–190
    [Google Scholar]
  50. Shearman C., Underwood H., Jury K., Gasson M. Cloning and DNA sequence analysis of a Lactococcus bacteriophage lysin gene. Mol & Gen Genet 1989; 218:214–221
    [Google Scholar]
  51. Smith G.R. General recombination. In Lambda II 1983 Edited by Hendrix R.W., Roberts J.W., Stahl F.W., Weisberg R.A. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; pp 175–209
    [Google Scholar]
  52. Sorokin A., Zumstein E., Azevedo V., Ehrlich S.D., Serror P. The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol Microbiol 1993; 10:385–395
    [Google Scholar]
  53. Staden R. Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res 1982; 10:4731–4751
    [Google Scholar]
  54. Steiner M., Lubitz W., Bläsi U. The missing link in phage lysis of Gram-positive bacteria: gene 14 of Bacillus subtilis phage ϕ29 encodes the functional homolog of lambda S protein. J Bacteriol 1993; 175:1038–1042
    [Google Scholar]
  55. Terzaghi B.E., Sandine W.E. Improved medium for lactic streptococci and their bacteriophages. Appl Environ Microbiol 1975; 29:807–813
    [Google Scholar]
  56. Vlcek C., Paces V. Nucleotide sequence of the late region of Bacillus subtilis phage phi-29 completes the 19 285 bp sequence of phi-29 genome: comparison with the homologous sequence of phage PZA. Gene 1989; 46:215–225
    [Google Scholar]
  57. de Vos W.M. Gene cloning and expression in lactic streptococci. FEMS Microbiol Rev 1987; 46:281–295
    [Google Scholar]
  58. Walker J.E., Saraste M., Runswick M.J., Gay N.J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1:945–951
    [Google Scholar]
  59. Ward L.J.H., Beresford T.P.J., Lubbers M.W., Jarvis B.D.W., Jarvis A.W. Sequence analysis of the lysin gene region of the prolate lactococcal bacteriophage c2. Can J Microbiol 1993; 39:767–774
    [Google Scholar]
  60. Watanabe K., Takesue S. The requirement for calcium in infection with Lactobacillus phage. J Gen Virol 1972; 17:19–30
    [Google Scholar]
  61. Weaver S., Levine M. Recombination circularization of Salmonella phage P22 DNA. Virology 1977; 76:29–38
    [Google Scholar]
  62. Yanisch-Perron G., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985; 33:103–119
    [Google Scholar]
  63. Young R. Bacteriophage lysis: mechanism and regulation. Microbial Rev 1992; 56:430–481
    [Google Scholar]
  64. Zimmermann J., Voss H., Kristensen T., Schwager G., Stegemann J., Erfle H., Ansorge W. Automated preparation and - purification of Ml 3 templates for DNA sequencing. Methods Mol Cell Biol 1989; 1:29–34
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-11-3061
Loading
/content/journal/micro/10.1099/13500872-140-11-3061
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error