1887

Abstract

subsp. and subsp. are closely related phenotypically and genetically. Here we report that certain regions of their chromosomes diverge considerably more than others. Conserved regions differ by less than 20%, whilst variable regions differ by more than 60%. This mosaic structure may have arisen by horizontal gene transfer from distantly related bacteria since in a particular region of the subsp. chromosome the G + C content and the codon bias are not typical for lactococci. Such an exchange, which conserves the function of the gene and cannot be achieved under selective pressure, may be of considerable importance in the evolution of bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-11-3053
1994-11-01
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/11/mic-140-11-3053.html?itemId=/content/journal/micro/10.1099/13500872-140-11-3053&mimeType=html&fmt=ahah

References

  1. Bardowski J., Ehrlich S.D., Chopin A. Tryptophan biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol 1992; 174:6563–6570
    [Google Scholar]
  2. Chopin A. Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol Rep 1993; 12:21–38
    [Google Scholar]
  3. Collins M.D., Ash C., Farrow J.A.E., Wallbanks S., Williams A.M. 16S ribosomal ribonucleic acid sequence analyses of lactococci and related taxa Description of Vagococcus fluvialis gen. sp. nov.. J Appl Bacteriol 1989; 67:453–460
    [Google Scholar]
  4. Delorme C., Ehrlich S.D., Renault P. Histidine biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol 1992; 174:6571–6579
    [Google Scholar]
  5. Delorme C., Ehrlich S.D., Renault P. Gene inactivation in Lactococcus lactis. II. Histidine biosynthesis. J Bacteriol 1993; 175:4391–4399
    [Google Scholar]
  6. Dowson C.G., Hutchison A., Brannigan J.A., George R.C., Hansman D., Lineares J., Tomasz A., Maynard Smith J.M., Spratt B.G. Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci USA 1989; 86:8842–8846
    [Google Scholar]
  7. Eriani G., Delarue M., Poch O., Gangioff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 1990; 347:203–206
    [Google Scholar]
  8. Fox G.E., Wisotzkey J.D., Jurtshuk P. Jr How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 1992; 42:166–170
    [Google Scholar]
  9. Garvie E.I., Farrow J.A.E. Streptococcus lactis subsp cremoris (Orla-Jensen) comb. nov. and Streptococcus lactis subsp. diacetylactis (Matuszewski et al.) nom. rev. comb. nov.. Int J Syst Bacteriol 1982; 32:453–455
    [Google Scholar]
  10. Gilson E., Saurin W., Perrin D., Bachellier S., Hofnung M. The BIME family of Bacteriol highly repetitive sequences. Res Microbiol 1991; 142:217–222
    [Google Scholar]
  11. Godon J.J., Chopin M.-C., Ehrlich S.D. Branched chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol 1992a; 174:6580–6589
    [Google Scholar]
  12. Godon J.J., Delorme C., Ehrlich S.D., Renault P. Divergence of genomic sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 1992b; 58:4045–4047
    [Google Scholar]
  13. Groisman E.A., Saier M.H. Jr, Ochman H. Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J 1992; 11:1309–1316
    [Google Scholar]
  14. Groisman E.A., Sturmoski M.A., Solomon F.R., Lin R., Ochman H. Molecular, functional and evolutionary analysis of sequences specific to Salmonella. Proc Natl Acad Sci USA 1993; 90:1033–1037
    [Google Scholar]
  15. Higgins C.F., McLaren R.S., Newbury S.F. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? - a review. Gene 1988; 72:3–14
    [Google Scholar]
  16. Hulton C.S.J., Higgins C.F., Sharp P.M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 1991; 5:825–834
    [Google Scholar]
  17. Jarvis A.W., Jarvis B.D.W. Deoxyribonucleic acid homology among lactic streptococci. Appl Environ Microbiol 1981; 41:77–83
    [Google Scholar]
  18. Le Bourgeois P., Lautier M., Mata M., Ritzenthaler P. Physical and genetic map of the chromosome of Lactococcus lactis subsp. lactis IL1403. J Bacteriol 1992; 174:6752–6762
    [Google Scholar]
  19. Loureiro Dos Santos A.L., Chopin A. Shotgun cloning in Streptococcus lactis. FEMS Microbiol Lett 1987; 42:209–212
    [Google Scholar]
  20. Martin C., Sibold C., Hakenbeck R. Relatedness of penicillin-binding protein la genes from different clones of penicillin-resistant Streptococcus pneumoniae isolated in South Africa and Spain. EMBO J 1992; 11:3831–3836
    [Google Scholar]
  21. Maynard Smith J., Dowson C.G., Spratt B.G. Localized sex in bacteria. Nature 1991; 349:29–31
    [Google Scholar]
  22. Médigue C., Rouxel T., Vigier P., Héenaut A., Danchin A. Evidence for horizontal gene transfer in Escherichia coli speciation. J Mol Evol 1991; 222:851–856
    [Google Scholar]
  23. Raben N., Borriello F., Amin J., Horwitz R., Fraser D., Plotz P. Human histidyl-tRNA synthetase: recognition of amino acid signature regions in class 2a aminoacyl-tRNA synthetases. Nucleic Acids Res 1992; 20:1075–1081
    [Google Scholar]
  24. Reeves P. Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet 1993; 9:17–22
    [Google Scholar]
  25. Reiter B., Oram J.D. Nutritional studies on cheese starters. J Dairy Res 1962; 29:63–77
    [Google Scholar]
  26. Salama M., Sandine W., Giovannoni S. Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp cremoris. Appl Environ Microbiol 1991; 57:1313–1318
    [Google Scholar]
  27. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual 1989, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Shanley M.S., Harrisson A., Parales R.E., Kowalchuck G., Mitchell D., Ornston L.N. Unusual G + C content and codon usage in catlJF, a segment of the ben-cat supra-operonic cluster in the Acinetobacter calcoaceticus chromosome. Gene 1994; 138:59–65
    [Google Scholar]
  29. Simon M., Zieg J., Silverman M., Mandel G., Doolittle R. Phase variation: evolution of a controlling element. Science 1980; 209:1370–1374
    [Google Scholar]
  30. Spratt B.G., Bowler L.D., Zhang J., Maynard Smith J. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 1992; 34:115–125
    [Google Scholar]
  31. Terzaghi B., Sandine W.E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 1975; 29:807–813
    [Google Scholar]
  32. Tulloch D.L., Finch L.R., Hillier A.J., Davidson B.E. Physical map of the chromosome of Lactococcus lactis subsp. lactis DL11 and localization of six putative rRNA operons. J Bacteriol 1991; 173:2768–2775
    [Google Scholar]
  33. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Ensymol 1987; 153:3–11
    [Google Scholar]
/content/journal/micro/10.1099/13500872-140-11-3053
Loading
/content/journal/micro/10.1099/13500872-140-11-3053
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error