1887

Abstract

NM48, a non-mucoid derivative of an alginate-producing strain isolated from a cystic fibrosis patient, was grown in batch culture with glycerol, glucose or succinate as carbon source, and in continuous culture (0.05 h) under glycerol or glucose limitation. Glycerol uptake, glycerol kinase and glycerol-3-phosphate dehydrogenase were induced by glycerol, but not by glucose or succinate. Linear uptake of [C]glycerol by washed cells ( ≤ 2 μM) was inhibited by unlabelled glycerol and glyceraldehyde, but not by cyanide or the uncoupling agent carbonyl cyanide -trifluoromethoxyphenylhydrazone (FCCP), and was accompanied by substantial intracellular accumulation of glycerol-3-phosphate and/or dihydroxyacetone phosphate but not glycerol. Prolonged growth under glycerol limitation led to substantial increases in the activities and/or concentrations of the enzymes catalysing glycerol uptake and metabolism, together with a 48000 outer-membrane protein which was also over-expressed following prolonged growth under glucose limitation. The N-terminal amino acid sequence (AEAFSPN-) and electrophoretic properties of this protein were the same as those of the previously characterized glucose porin (OprB) from , indicating that this porin is active with both glucose and glycerol. It is concluded that during growth under glycerol limitation, glycerol is transported into NM48 via OprB and a high-affinity, binding-protein-independent facilitated-diffusion system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-11-2961
1994-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/11/mic-140-11-2961.html?itemId=/content/journal/micro/10.1099/13500872-140-11-2961&mimeType=html&fmt=ahah

References

  1. Beijer L., Rutberg L. Utilisation of glycerol and glycerol 3-phosphate is differently affected by the phosphotransferase system in Bacillus subtilis. FEMS Microbiol Lett 1992; 100:217–220
    [Google Scholar]
  2. Cheng K.J., Ingram J.M., Costerton J.W. Release of alkaline phosphatase from cells of Pseudomonas aeruginosa by manipulation of cation concentration and of pH. J Bacteriol 1970; 104:748–753
    [Google Scholar]
  3. Cornish A., Greenwood J.A., Jones C.W. Binding-protein-dependent glucose transport by Agrobacterium radiobacter grown in glucose-limited continuous culture. J Gen Microbiol 1988; 134:3099–3110
    [Google Scholar]
  4. Dawson R.M.C., Elliott D.C., Elliott W.C., Jones K.M. Data for Biochemical Research 1986 Oxford: Oxford University Press; 3rd edn, pp 485–486
    [Google Scholar]
  5. Death A., Notley L., Ferenci T. Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress. J Bacteriol 1993; 175:1475–1483
    [Google Scholar]
  6. Deretic V., Konyecsni W.M. Control of mucoidy in Pseudomonas aeruginosa-, transcriptional regulation of algR and identification of the second regulatory gene, algQ. J Bacteriol 1989; 171:3680–3688
    [Google Scholar]
  7. Deretic V., Govan J.R.W., Konyecsni W.M., Martin D.W. Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli. Mol Microbiol 1990; 4:189–196
    [Google Scholar]
  8. DeVault J., D„Kimbara K., Chakrabarty A.M. Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa. Mol Microbiol 1990; 4:737–745
    [Google Scholar]
  9. Govan J.R.W., Martin D.W., Deretic V.P. Mucoid Pseudomonas aeruginosa and cystic fibrosis: the role of mutations in muc loci. FEMS Microbiol Lett 1992; 100:323–330
    [Google Scholar]
  10. Hancock R.E.W., Carey A.M. Protein D1 -a glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa. FEMS Microbiol Lett 1980; 8:105–109
    [Google Scholar]
  11. Hancock R.E.W., Nikaido H. Outer membranes of Gram-negative bacteria XIX. Isolation from Pseudomonas aeruginosa PAOl and use in reconstitution and definition of the permeability barrier. J Bacteriol 1978; 136:381–390
    [Google Scholar]
  12. Hancock R.E.W., Siehnel R.H., Martin N. Outer membrane proteins of Pseudomonas. Mol Microbiol 1990; 4:1069–1075
    [Google Scholar]
  13. Harder W., Kuenen J.G., Matin A. A review: microbial selection in continuous culture. J Appl Bacteriol 1977; 43:1–24
    [Google Scholar]
  14. Heller K.B., Lin E.C.C., Wilson T.H. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol 1980; 144:274–278
    [Google Scholar]
  15. Kasahara M., Anraku Y. Succinate dehydrogenase of Escherichia coli membrane vesicles: activation and properties of the enzvme. J Biochem 1974; 76:959–966
    [Google Scholar]
  16. Lin E.C.C. Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 1976; 30:535–578
    [Google Scholar]
  17. MacGregor C.H., Wolff J.A., Arora S.K., Phibbs P.V. Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. J Bacteriol 1991; 173:7204–7212
    [Google Scholar]
  18. Marty N., Dournes J., Chabanon G., Montrozier H. Influence of nutrient media on the chemical composition of the exopolysaccharide from mucoid and non-mucoid Pseudomonas aeruginosa. FEMS Microbiol Lett 1992; 98:35–44
    [Google Scholar]
  19. May T.B., Shinabarger D., Maharaj R., Kato J., Chu L., DeVault J.D., Roychoudhury S., Zielinski N.A., Berry A., Rothmel R.K., Misra T.K., Chakrabarty A.M. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev 1991; 4:191–206
    [Google Scholar]
  20. McCowen S.A., Phibbs P.V., Feary T.W. Glycerol catabolism in wild-type and mutant strains of Pseudomonas aeruginosa. Curr Microbiol 1981; 5:191–196
    [Google Scholar]
  21. McCowen S.A., Sellers J.R., Phibbs P.V. Characterisation of fructose-1,6-diphosphate-insensitive catabolite glycerol kinase of Pseudomonas aeruginosa. Curr Microbiol 1987; 14:323–327
    [Google Scholar]
  22. Mian F.A., Jarman T.R., Righelato R.C. Biosynthesis of exopolysaccharide by Pseudomonas aeruginosa. J Bacteriol 1978; 134:418–422
    [Google Scholar]
  23. Minambres B., Reglero A., Luengo J.M. Characterisation of an inducible transport system for glycerol in Streptomyces clavuligerus: repression by L-serine. J Antibiot 1991; 45:269–277
    [Google Scholar]
  24. Osborn M.J. Studies on the Gram-negative cell wall, I. Evidence for the role of 2-keto-3-deoxyoctonate in the lipolysaccharide of Salmonella typhimurium. Biochemistry 1963; 50:499–506
    [Google Scholar]
  25. Romano A.H., Saier M.H., Harriott O.T., Reizer J. Physiological studies on regulation of glycerol utilization by the phosphenolpyruvate: sugar phosphotransferase system in Enterococcus faecalis. J Bacteriol 1990; 172:6741–6748
    [Google Scholar]
  26. Schweizer H.P. The agmR gene, an environmentally-responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa. J Bacteriol 1991; 173:6798–6806
    [Google Scholar]
  27. Siegel L.S., Phibbs P.V. Glycerol and L-a-glycerol-3-phosphate uptake by Pseudomonas aeruginosa. Curr Microbiol 1979; 2:251–256
    [Google Scholar]
  28. Stinson M.W., Cohen M.A., Merrick J.M. Isolation of dicarboxylic acid-and glucose-binding proteins from Pseudomonas aeruginosa. J Bacteriol 1976; 128:573–579
    [Google Scholar]
  29. Terry J.M., Pina S.E., Mattingly S.J. Environmental conditions which influence mucoid conversion in Pseudomonas aeruginosa PAO1. Infect Immun 1991; 59:471–477
    [Google Scholar]
  30. Terry J.M., Pina S.E., Mattingly S.J. Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype. Infect Immun 1992; 60:1329–1335
    [Google Scholar]
  31. Tsay S.S., Brown K.K., Gaudy E.T. Transport of glycerol by Pseudomonas aeruginosa. J Bacteriol 1971; 108:82–88
    [Google Scholar]
  32. Voegele R.T., Sweet G.D., Boos W. Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator. J Bacteriol 1993; 175:1087–1094
    [Google Scholar]
  33. Weissenborn D.L., Wittekindt N., Larson T.J. Structure and regulation of the glpFK operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12. J Biol Chem 1992; 267:6122–6131
    [Google Scholar]
  34. Williams S.G., Greenwood J.A., Jones C.W. Isolation of novel strains of Agrobacterium radiobacter with altered capacities for lactose metabolism and succinoglucan production. J Gen Microbiol 1990; 136:2179–2188
    [Google Scholar]
  35. Wylie J.L., Bernegger-Egli G., O'Neil J.D.J., Worobec E.A. Biophysical characterization of OprB, a glucose-inducible protein of Pseudomonas aeruginosa. J Bioenerg Biomembr 1993; 25:547–556
    [Google Scholar]
  36. Zielinski N.A., Maharaj R., Roychoudhury S., Danaganan G.E., Hendrickson W., Chakrabarty A.M. Alginate synthesis in Pseudomonas aeruginosa-, environmental regulation of the algC promoter. J Bacteriol 1992; 174:7680–7688
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-11-2961
Loading
/content/journal/micro/10.1099/13500872-140-11-2961
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error