Previous analysis of the class 1 outer-membrane (OM) protein of Neisseria meningitidis has identified discrete epitopes to be potential targets for immune attack. The conformation of these epitopes is important for inducing antibodies which can react with the native protein and promote complement-mediated lysis of the meningococcus. The multiple antigen peptide (MAP) system, which consists of an oligomeric branching lysine core to which are attached dendritic arms of defined peptide antigens, confers some conformational stability and also allows for the preparation of immunogens containing both B-cell and T helper (Th)-cell epitopes. In this study, MAPs were synthesized to contain (i) the subtype P1.16b meningococcal class 1 protein B-cell epitope (B-MAP), and (ii) the P1.16b epitope in tandem with a defined Th-cell epitope, chosen from tetanus toxin (BT-MAP). The B-MAP was non-immunogenic in animals. In contrast, incorporation of the Th-cell epitope into BT-MAP induced a strong humoral response towards the class 1 protein B-cell epitope. Antisera from immunized mice and rabbits reacted in ELISA with synthetic peptides containing the B-cell epitope, and also cross-reacted with meningococcal OMs from strains of subtype P1.16b and P1.16a. Murine and rabbit antisera showed similar reactivity and epitope specificity, but did not react with denatured class 1 protein in Western blotting, indicating the predominance of antibodies directed towards conformational epitopes. The antisera from rabbits immunized with BT-MAP promoted complement-mediated bactericidal killing not only of the homologous meningococcal subtype P1.16b strain but also of subtype P1.16a.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error