1887

Abstract

Previous analysis of the class 1 outer-membrane (OM) protein of Neisseria meningitidis has identified discrete epitopes to be potential targets for immune attack. The conformation of these epitopes is important for inducing antibodies which can react with the native protein and promote complement-mediated lysis of the meningococcus. The multiple antigen peptide (MAP) system, which consists of an oligomeric branching lysine core to which are attached dendritic arms of defined peptide antigens, confers some conformational stability and also allows for the preparation of immunogens containing both B-cell and T helper (Th)-cell epitopes. In this study, MAPs were synthesized to contain (i) the subtype P1.16b meningococcal class 1 protein B-cell epitope (B-MAP), and (ii) the P1.16b epitope in tandem with a defined Th-cell epitope, chosen from tetanus toxin (BT-MAP). The B-MAP was non-immunogenic in animals. In contrast, incorporation of the Th-cell epitope into BT-MAP induced a strong humoral response towards the class 1 protein B-cell epitope. Antisera from immunized mice and rabbits reacted in ELISA with synthetic peptides containing the B-cell epitope, and also cross-reacted with meningococcal OMs from strains of subtype P1.16b and P1.16a. Murine and rabbit antisera showed similar reactivity and epitope specificity, but did not react with denatured class 1 protein in Western blotting, indicating the predominance of antibodies directed towards conformational epitopes. The antisera from rabbits immunized with BT-MAP promoted complement-mediated bactericidal killing not only of the homologous meningococcal subtype P1.16b strain but also of subtype P1.16a.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-11-2951
1994-11-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/11/mic-140-11-2951.html?itemId=/content/journal/micro/10.1099/13500872-140-11-2951&mimeType=html&fmt=ahah

References

  1. Arnon R. Synthetic peptides as the basis for vaccine design. Mol Immunol 1991; 28:209–215
    [Google Scholar]
  2. Bjune G., Hoiby E.A., Gronnesby J.K., Arnesen O., Fredriksen J.H., Halstensen A., Holten E., Lindbak A.K., Nokleby H., Rosenqvist E., Solberg L.K., Closs O., Eng J., Froholm L.O., Lystad A., Bakketeig L.S., Hareide B. Effect of outer-membrane vesicle vaccine against group-B meningococcal disease in Norway. Lancet 1991; 338:1093–1096
    [Google Scholar]
  3. Calvo-Calle J.M., de Oliveira G.A., Clavijo P., Maracic M., Tam J.P., Lu Y.A., Nardin E.H., Nussenzweig R.S., Cochrane A.H. Immunogenicity of multiple antigen peptides containing B and non-repeat T cell epitopes of the circumsporozoite protein of Plasmodium falciparum. J Immunol 1993; 150:1403–1412
    [Google Scholar]
  4. Christodoulides M., McGuinness B.T., Heckels J.E. Immunization with synthetic peptides containing epitopes for the class 1 outer-membrane protein of Neisseria meningitidis: production of bactericidal antibodies on immunization with a cyclic peptide. J Gen Microbiol 1993; 139:1729–1738
    [Google Scholar]
  5. Darcy F., Maes P., Gras-Masse H., Auriault C., Bossus M., Deslee D., Godard I., Cesbron M.F., Tartar A., Capron A. Protection of mice and nude rats against toxoplasmosis by a multiple antigenic peptide construction derived from Toxoplasma gondii P30 antigen. J Immunol 1992; 149:3636–3641
    [Google Scholar]
  6. DeFoort J.P., Nardelli B., Huang W., Tam J.P. A rational design of synthetic peptide vaccine with built-in adjuvant. A modular approach for unambiguity. Int J Pept Protein Res 1992a; 40:214–221
    [Google Scholar]
  7. DeFoort J.P., Nardelli B., Huang W., Ho D.D., Tam J.P. Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proc Natl Acad Sci USA 1992b; 89:3879–3883
    [Google Scholar]
  8. Esposito G., Fogolari F., Viglino P., Cattarinussi S., de Magristris M.T., Chiappinelli L., Pessi A. A conformational study of a short Pertussis toxin T cell epitope incorporated in a multiple antigen peptide template by CD and two-dimensional NMR. Analysis of the structural effects on the activity of synthetic immunogens.. Eur J Biochem 1993; 217:171–187
    [Google Scholar]
  9. Ey P.L., Russel-Jones G.J., Jen kin C.R. Isotypes of mouse IgG1. Evidence for ‘non-complement-fixing’ IgG1 antibodies and characterization of their capacity to interfere with IgG2 sensitisation of target red blood cells for lysis by complement. Mol Immunol 1980; 17:699–710
    [Google Scholar]
  10. Feavers I.M., Heath A.B., Bygraves J.A., Maiden M.C.J. Role of horizontal genetic exchange in the antigenic variation of the class-1 outer-membrane protein of Neisseria meningitidis. Mol Microbiol 1992; 6:489–495
    [Google Scholar]
  11. Francis M.J., Hastings G.Z., Brown F., McDermed J., Lu Y.-A., Tam J.P. Immunological evaluation of the multiple antigen peptide (MAP) system using the major immunogenic site of foot-and-mouth disease virus. Immunology 1991; 73:249–254
    [Google Scholar]
  12. Frasch C.E. Status of a group-B Neisseria meningitidis vaccine. Eur J Clin Microbiol 1985; 4:533–536
    [Google Scholar]
  13. Frasch C.E., Zollinger W.D., Poolman J.T. Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rep Infect Dis 1985; 7:504–510
    [Google Scholar]
  14. Geysen H.M., Rodda S.J., Mason T.J., Tribbick G., Schoofs P.G. Strategies for epitope analysis using peptide synthesis. J Immunol Methods 1987; 102:259–274
    [Google Scholar]
  15. Goldschneider I., Gotschlich E.C., Artenstein M.S. Human immunity to the meningococcus. II. Development of natural immunity. J Exp Med 1969; 129:1327–1348
    [Google Scholar]
  16. Hadjipetrou-Kourounakis L., Moller E. Adjuvants influence the immunoglobulin subclass distribution of immune responses in vivo. Scand J Immunol 1984; 19:214–225
    [Google Scholar]
  17. Heckels J.E. Structural comparison of Neisseria gonorrhoeae outer-membrane proteins. J Bacteriol 1981; 145:736–742
    [Google Scholar]
  18. van der Ley P., Heckels J.E., Virji M., Hoogerhout P., Poolman J.T. Topology of outer-membrane porins in pathogenic Neisseria spp. Infect lmmun 1991; 59:2963–2971
    [Google Scholar]
  19. Lu Y.-A., Clavijo P., Galantino M., Shen Z.-Y., Liu W., Tam J.P. Chemically unambiguous peptide immunogen: prep-aration, orientation and antigenicity of purified peptide conjugated to the multiple antigen peptide system. Mol Immunol 1991; 28:623–630
    [Google Scholar]
  20. McGuinness B.T., Barlow A.K., Clarke I.N., Farley J.E., Anilionis A., Poolman J.T., Heckels J.E. Deduced amino acid sequences of class 1 protein (PorA) from 3 strains of Neisseria meningitidis — synthetic peptides define the epitopes responsible for serosubtype specificity. J Exp Med 1990; 171:1871–1882
    [Google Scholar]
  21. McGuinness B.T., Clarke I.N., Lambden P.R., Barlow A.K., Poolman J.T., Jones D.M., Heckels J.E. Point mutation in meningococcal porA gene associated with increased endemic disease. Lancet 1991; 337:514–517
    [Google Scholar]
  22. McGuinness B.T., Lambden P.R., Heckels J.E. Class 1 outer membrane protein of Neisseria meningitidis: epitope analysis of the antigenic diversity between strains, implications for subtype definition and molecular epidemiology. Mol Microbiol 1993; 7:505–514
    [Google Scholar]
  23. de Moraes J.C., Perkins B.A., Camargo M.C.C., Hidalgo N.T.R., Barbosa H.A., Sacchi C.T., Gral I.M.L., Gattas V.L., Vasconcelos H.D., Plikaytis B.D., Wenger J.D., Broome C.V. Protective efficacy of a serogroup-B meningococcal vaccine in Sao-Paulo, Brazil. Lancet 1992; 340:1074–1078
    [Google Scholar]
  24. Munkley A., Tinsley C.R., Virji M., Heckels J.E. Blocking of bactericidal killing of Neisseria meningitidis by antibodies directed against class 4 outer membrane protein. Microb Pathog 1991; 11:447–452
    [Google Scholar]
  25. Neuberger M.S., Rajewsky K. Activation of mouse complement by monoclonal mouse antibodies. Eur J Immunol 1981; 11:1012–1016
    [Google Scholar]
  26. Panina-Bordignon P., Tan A., Termijtelen A., Demotz S., Corradin G., Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol 1989; 19:2237–2242
    [Google Scholar]
  27. Reynolds S.R., Dahl C.E., Harn D.A. T and B epitope determination and analysis of multiple antigen peptides for the Shistosoma mansoni experimental vaccine triose-phosphate isomerase. J Immunol 1994; 152:193–200
    [Google Scholar]
  28. Saukkonen K., Leinonen M., Abdillahi H., Poolman J.T. Comparative evaluation of potential components for group B meningococcal vaccine by passive protection in the infant rat in vitro bactericidal assay. Vaccine 1989; 7:325–328
    [Google Scholar]
  29. Tam J.P. Synthetic peptide vaccine design: synthesis and properties of a high density multiple antigen peptide system. Proc Natl Acad Sci USA 1988; 85:5409–5413
    [Google Scholar]
  30. Tam J.P., Lu Y.A. Vaccine engineering: enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T-cell and B-cell epitopes. Proc Natl Acad Sci USA 1989; 86:9084–9088
    [Google Scholar]
  31. Tam J.P., Lu Y.-A. Preparation of site-specific peptide immunogens using multiple antigen peptide approach system. Methods Neurosci 1991; 6:85–107
    [Google Scholar]
  32. Tam J.P., Zavala F. Multiple antigen peptide. A novel approach to increase detection sensitivity of synthetic peptides in solid-phase immunoassays. J Immunol Methods 1989; 124:53–61
    [Google Scholar]
  33. Tam J.P., Clavijo P., Lu Y.-A., Nussenzweig V., Nussenzweig R., Zavala F. Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria. J Exp Med 1990; 171:299–306
    [Google Scholar]
  34. Tinsley C.R., Heckels J.E. Variation in the expression of pili and outer-membrane protein by Neisseria meningitidis during the course of meningococcal infection. J Gen Microbiol 1986; 132:2483–2490
    [Google Scholar]
  35. Tsai C.M., Frasch C.E., Mocca L.F. Five structural classes of major outer membrane proteins in Neisseria meningitidis. J Bacteriol 1981; 146:69–78
    [Google Scholar]
  36. Valmori D., Pessi A., Bianchi E., Corradin G. Use of human universally antigenic tetanus toxin T cell epitopes as carriers for human vaccination. J Immunol 1992; 149:717–721
    [Google Scholar]
  37. Verheul A.F.M., van Gaans J.A.M., Wietrz E.J.H., Snippe H., Verhoef J., Poolman J.T. Meningococcal lipo-polysaccharide (LPS)-derived oligosaccharide-protein conjugates evoke outer membrane protein but not LPS-specific bactericidal antibodies in mice: influence of adjuvants. Infect lmmun 1993; 61:187–196
    [Google Scholar]
  38. Virji M., Heckels J.E. Location of a blocking epitope on outer-membrane protein-III of Neisseria gonorrhoeae by synthetic peptide analysis. J Gen Microbiol 1989; 135:1895–1899
    [Google Scholar]
  39. Wedege E., Froholm L.O. Human antibody response to a group B serotype 2a meningococcal vaccine determined by immunoblotting. Infect lmmun 1986; 51:571–578
    [Google Scholar]
  40. Wiertz E.J.H.J., Van Gaans-van den Brink J.A.M., Gausepohl H., Prochnicka-Chalufour A., Hoogerhout P., Poolman J.T. Identification of T-cell epitopes occurring in a meningococcal class 1 outer membrane protein using overlapping peptides assembled with simultaneous multiple peptide-synthesis. J Exp Med 1992; 176:79–88
    [Google Scholar]
  41. Zhong G., Toth I., Reid R., Brunham R.C. Immutio-genicity evaluation of a lipidic amino acid-based synthetic peptide vaccine for Chlamydia trachomatis. J Immunol 1993; 151:3728–3736
    [Google Scholar]
  42. Zollinger W., Boslego J., Moran E., Garcia J., Ruiz S., Brandt B., Martinez M., Arthur J., Underwood P., Hankins W., Mays J., Gilly J. the Chilean National Committee for Meningococcal Disease Meningococcal serogroup B vaccine: protection trial and follow-up studies in Chile. NIPH Ann 1991; 14:211–213
    [Google Scholar]
/content/journal/micro/10.1099/13500872-140-11-2951
Loading
/content/journal/micro/10.1099/13500872-140-11-2951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error