1887

Abstract

The outer membrane of the Gram-negative obligate intracellular parasite contains two large surface protein antigens with approximate molecular masses of 200 and 135 kDa termed rOmpA and rOmpB, respectively. rOmpB is the most abundant protein in the outer membrane, while rOmpA is a relatively minor constituent. Densitometry of intrinsically radiolabelled protein profiles from -infected Vero cells indicated a molar ratio of approximately 1:9 between rOmpA and rOmpB. The putative promoter-5' untranslated regions (5' UTR) from their recently characterized genes (and ) were placed in the promoter assay vector pKK232-8 to test whether these elements conserve aspects of differential expression in a heterologous host-reporter system. Primer extension analysis of RNA from clones containing the constructs indicated that RNA polymerase faithfully utilizes and transcription start sites identified previously in The insert directs 28-fold higher levels of chloramphenicol acetyl transferase activity than the insert.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-11-2941
1994-11-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/11/mic-140-11-2941.html?itemId=/content/journal/micro/10.1099/13500872-140-11-2941&mimeType=html&fmt=ahah

References

  1. Anacker R.L., Philip R.N., Williams J.C., List R.H., Mann R.E. Biochemical and immunochemical analysis of Rickettsia rickettsii strains of various degrees of virulence. Inject Immun 1984; 44:559–564
    [Google Scholar]
  2. Anderson B.E., Baumstark B.R., Bellini W.J. Expression of the gene encoding the 17-kilodalton antigen from Rickettsia rickettsii: transcription and posttranslational modification. J Bacteriol 1988; 170:4493–4500
    [Google Scholar]
  3. Anderson B.E., McDonald G.A., Jones D.C., Regnery R.L. A protective protein antigen of Rickettsia rickettsii has tandemly repeated, near-identical sequences. Inject Immun 1990; 58:2760–2769
    [Google Scholar]
  4. Beck E., Bremer E. Nucleotide sequence of the gene omp A coding the outer membrane protein II of Escherichia coli K-12. Nucleic Acids Res 1980; 8:3011–3024
    [Google Scholar]
  5. Brosius J. Plasmid vectors for the selection of promoters. Gene 1984; 21:151–160
    [Google Scholar]
  6. Cai J., Winkler H.H. Identification of tlc and gltA mRNAs and determination of in situ RNA half-life in Rickettsia prowazekii. J Bacteriol 1993; 175:5725–5727
    [Google Scholar]
  7. Chen L.-H., Emory S.A., Bricker A.L., Bouvet P., Belasco J.G. Structure and function of a bacterial mRNA stabilizer: analysis of the 5′ untranslated region of omp A mRNA. J Bacteriol 1991; 173:4578–4586
    [Google Scholar]
  8. Cole S.T., Bremer E., Hindennach I., Henning U. Characterisation of the promoters for the omp A gene which encodes a major outer membrane protein of Escherichia coli. Mol & Gen Genet 1982; 188:472–479
    [Google Scholar]
  9. Dasch G.A. Isolation of species-specific protein antigens of Rickettsia typhi and Rickettsia prowazekii for immunodiagnosis and immunoprophylaxis. J Clin Microbiol 1981; 14:333–341
    [Google Scholar]
  10. Ding H.-F., Winkler H.H. Characterization of the DNA-melting function of the Rickettsia prowazekii RNA polymerase. J Biol Chem 1993; 268:3897–3902
    [Google Scholar]
  11. Emory S.A., Belasco J.G. The omp A 5′ untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J Bacteriol 1990; 172:4472–4481
    [Google Scholar]
  12. Fourney R.M., Miyakoshi J., Day R.S., Paterson M.C. Northern blotting: efficient RNA staining and transfer. Focus 1988; 10:5–7
    [Google Scholar]
  13. Von Gabain A., Belasco J.G., Schottel J.L., Chang A.C.Y., Cohen S.N. Decay of mRNA in Escherichia coli: investigation of the fate of specific segments of transcripts. Proc Natl Acad Sci USA 1983; 80:653–657
    [Google Scholar]
  14. Gilmore R.D. Jr, Joste N., McDonald G.A. Cloning, expression and sequence analysis of the gene encoding the 120 kD surface-exposed protein of Rickettsia rickettsii. Mol Microbiol 1989; 3:1579–1586
    [Google Scholar]
  15. Gilmore R.D. Jr, Cieplak W., Policastro P.F., Hackstadt T. The 120 kilodalton outer membrane protein (rOmp B) of Rickettsia rickettsii is encoded by an unusually long open reading frame: evidence for protein processing from a large precursor. Mol Microbiol 1991; 5:2361–2370
    [Google Scholar]
  16. Hackstadt T., Messer R., Cieplak W., Peacock M.G. Proteolytic cleavage of the 120 kDa outer membrane protein of Rickettsiae: identification of an avirulent mutant deficient in processing. Infect Immun 1992; 60:159–165
    [Google Scholar]
  17. Hawley D.K., McClure W.R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 1983; 11:2237–2255
    [Google Scholar]
  18. King P.V., Blakesley R.W. Optimizing DNA ligations for transformation. Focus 1986; 8:1–3
    [Google Scholar]
  19. Krause D.C., Winkler H.H., Wood D.O. Cloning and expression of the Rickettsia prowazekii ADP/ATP translocator in Escherichia coli. Proc Natl Acad Sci USA 1985; 82:3015–3019
    [Google Scholar]
  20. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  21. Laskey R.A., Mills A.D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem 1975; 56:335–341
    [Google Scholar]
  22. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: A Laboratory Manual 1982 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. McDonald G.A., Anacker R.L., Garjian K. Cloned gene of Rickettsia rickettsii surface antigen: candidate vaccine for Rocky Mountain spotted fever. Science 1987; 235:83–85
    [Google Scholar]
  24. McDonald G.A., Anacker R.L., Mann R.E. Extraction of protective components of Rickettsia rickettsii with n-octyl-β-d-glucopyranoside. Rev Infect Dis 1988; 10:S382–S385
    [Google Scholar]
  25. Movva N.R., Nakamura K., Inouye M. Regulatory region of the gene for the OmpA protein, a major outer membrane protein of Escherichia coli. Proc Natl Acad Sci USA 1990; 77:3845–3849
    [Google Scholar]
  26. Palmer E.L., Martin M.L., Mallavia L. Ultrastructure of the surface of Rickettsia prowayeki and Rickettsia akari. Appl Microbiol 1974; 28:713–716
    [Google Scholar]
  27. Policastro P.F., Fredholm M., Wilson M.C. Truncated gag products encoded by Gv-1-responsive endogenous retrovirus loci. J Virol 1989; 63:4136–4147
    [Google Scholar]
  28. Policastro P.F., Anderson B.E., McDonald G.A. Promoter structure and expression of the 155-kDa surface antigen gene of Rickettsia rickettsii. In Rickettsiology: Current Issues and Perspectives 1990 Edited by Hechemy K.E., Paretsky D., Walker D.H., Mallavia L.P. New York: New York Academy of Sciences; pp 468–477
    [Google Scholar]
  29. Sanger F., Coulson A.R. The use of thin acrylamide gels for DNA sequencing. FEBS Lett 1978; 87:107–110
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  31. Shelness G.S., Williams D.L. Secondary structure analysis of apolipoprotein II mRNA using enzymatic probes and reverse transcriptase. J Biol Chem 1985; 260:8637–8646
    [Google Scholar]
  32. Silhavy T.J., Berman M.L., Enquist L.W. Experiments with Gene Fusions 1984 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Thomas P.S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acid Sci USA 1980; 77:5201–5205
    [Google Scholar]
  34. Tomizawa J.-I. Control of ColEl plasmid replication: initial interaction of RNA 1 and the primer transcript is reversible. Cell 1985; 40:527–535
    [Google Scholar]
  35. Weisburg W.G., Woese C.R., Dobson M.E., Weiss E. A common origin of rickettsiae and certain plant pathogens. Science 1985; 230:556–558
    [Google Scholar]
  36. Weisburg W.G., Dobson M.E., Samuel J.E., Dasch G.A., Mallavia L.P., Baca O., Mandelco L., Sechrest J.E., Weiss E., Woese C.R. Phylogenetic diversity of the rickettsiae. J Bacteriol 1989; 171:4202–4206
    [Google Scholar]
  37. Weiss E. Adenosine triphosphate and other requirements for the utilization of glucose by agents of the psittacosis-trachoma group. J Bacteriol 1965; 90:243–253
    [Google Scholar]
  38. Weiss E., Coolbaugh J.C., Williams J.C. Separation of viable Rickettsia typhi from yolk sac and L cell host components by Renografin density gradient centrifugation. Appl Microbiol 1975; 30:456–463
    [Google Scholar]
  39. Wood D.O., Atkinson W.H., Sikorski R.S., Winkler H.H. Expression of the Rickettsia prowayekii citrate synthase gene in Escherichia coli. J Bacteriol 1983; 155:412–416
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-11-2941
Loading
/content/journal/micro/10.1099/13500872-140-11-2941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error